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Abstract

We consider the problem of a principal aiming to allocate an indivisible, productivity-

enhancing resource—e.g., computing equipment, a grant, etc.—to one of many agents.

The principal can utilize two instruments previously studied only in isolation but often

used together in practice: costly verification and money burning. We identify the op-

timal allocation protocol, which takes one of two forms. When full separation of types

is suboptimal, money burning is not employed, but there is significant pooling. If full

separation is optimal, then both instruments are used. Lower types are only subject to

money burning. Higher types go through verification and burn money. Notably, money

burning is not substituted away.

JEL Code: C72, D73, D82

Keywords: costly verification, money burning, allocation problem

*Meta, Data Science, rohit@rohit-patel.com
�Department of Economics, Princeton University, curgun@princeton.edu
�We would also like to thank various seminar and conference audiences, Rakesh Vohra, Eddie Dekel, Niko

Matouschek, James Schummer, Alvaro Sandroni, Michael Powell, Navin Kartik, Alessandro Lizzeri, Slyvain

Chassang, Hector Chade, Andrew Ferdowsian, Ayca Kaya, Doruk Cetemen, Christopher Sandmann, Mark

Whitmeyer, Pietro Ortoleva, Vasiliki Skreta, Venkataraman Bhaskar, Caroline Thomas, Leeat Yariv and

Kemal Yildiz for helpful comments and suggestions.

1



1 Introduction

Efficient allocation of resources is a crucial component of any organization (Maritan and

Lee (2017)). We consider allocating a scarce resource—computing equipment, personnel, a

research grant, funding, etc.—to one of many agents. Importantly, the agents are hetero-

geneous: they vary in the productivity increase that access to this resource allows, which

they know privately. In the presence of transfers, the principal’s problem is trivial: she

can simply auction the resource to guarantee an efficient allocation. Nonetheless, in many

settings, monetary transfers are not feasible either due to legal, ethical, or organizational

constraints. A manager cannot auction a new piece of office equipment, researchers cannot

bribe funding agencies for grants, etc. We therefore consider the case in which the principal

cannot use transfers.

Suppose agents report their value for the resource to the principal. If the principal’s allo-

cation is responsive to these reports—ideally corresponding to an efficient allocation—agents

would clearly have an incentive to misreport, and embellish their assessed returns from the

resource. One approach to this problem relies on costly verification of agents’ reports by

the principal (see Ben-Porath et al. (2014) and literature that follows). The principal could

simply check, possibly probabilistically, the reports of some of the agents. Another approach

is to impose bureaucratic hurdles for agents applying for the resource. This is commonly

referred to as money-burning activities: costly and meaningless activities for the agents

that destroy surplus (see Hartline and Roughgarden (2008) and the literature that follows).

It might seem like only one of these instruments is necessary, as both are costly to the

principal and serve the same purpose. Indeed, the literature has analyzed them in isola-

tion. For instance, capital financing within large firms has been studied through the lens of

costly verification by Harris et al. (1982) and through the lens of money burning by Ross

(1986), albeit separately. Nonetheless, in practice, these instruments are often employed in

conjunction. In this paper, we analyze the optimal usage of the two instruments in tandem.

We show that money burning and costly verification are complements. When used

in conjunction, the two instruments always achieve allocative efficiency, i.e., all types are

differentiated, and the agent with the highest productivity receives the resource (breaking

ties uniformly). In contrast, costly verification in isolation always results in significant

pooling: any two types that are below the cost of verification have the same allocation

probability regardless of the difference in the associated productivities. Money burning in

isolation, on the other hand, can achieve allocative efficiency albeit with a very large loss

of surplus. Indeed, every potential increase in productivity requires a different and higher

level of money burning. When the two instruments are both available and used in tandem,

for lower types we see that only money burning is used. The required money burning

2



increases in type until the productivity reaches the cost of verification. All the types whose

productive is equal to or larger than the cost of verification burn the same amount of money.

For those higher types, the fixed amount of money burning is complemented by increasing

the verification probability, thus avoiding excessive loss of surplus.

Our results have implications for several applications. For example, a diversified firm

might require mid-level managers to go through multiple bureaucratic hoops, resulting in

wasted manager-time and hence company resources before assigning them new resources.

Our findings suggest that these bureaucratic requirements will increase as the managers’

claims increase, but only up to a point. After that, the firm starts to utilize external

audits, but even when a manager’s claim is subject to an audit, they still need to fulfill the

bureaucratic requirements. Similarly, a researcher applying for a grant might have to go

through a time-consuming application process, diverting their focus from research even if the

funding agency solicits outside expert evaluations before granting funds. Likewise, different

municipalities might engage in lobbying activities for some government facility –a clinic,

school, bridge, etc.– to be built in their jurisdiction, “wasting” municipal funds instead of

allocating them for the welfare of the local populace. Despite lobbying, the government

might still use federal funds to conduct a costly population survey before deciding where to

build such a facility.

In our setup, there are D agents, each of which has a productivity increase drawn from

gaining access to a singular resource. The productivity increase is drawn independently

and identically from a finite set of values. Both the agents and the principal are risk

neutral. The principal has two instruments at her disposal: costly verification and money

burning. Verification has a fixed cost per agent, borne exclusively by the principal, and

reveals productivity perfectly (similar to Ben-Porath et al. (2014)). Money burning has no

informational content beside signaling and is costly both to the principal and the agent who

is burning money (similar to Hartline and Roughgarden (2008)). Each agent cares about

the productivity increase he will get from the resource, net of his losses incurred through

the required money burning. All agents have an outside option that provides a normalized

value of 0 throughout. The principal cares about the productivity increase, net of the

money burning costs and verification costs. A mechanism then corresponds to an extensive

form game that the principal designs and commits to, with Bayes Nash Equilibrium as the

solution concept.

It is worth noting that the set of direct mechanisms is very large, corresponding to

arbitrarily large extensive form games. Therefore analogous to the analysis of Ben-Porath

et al. (2014) it is worthwhile to focus on optimal direct mechanisms. We show that optimal

direct mechanisms correspond to a straightforward procedure. First, all agents report their
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productivities to the principal, then the principal chooses the agent with the highest re-

ported type (breaking ties uniformly) as a “candidate”. This candidate then goes through

the necessary money burning dictated by the vector of reports. Once the money burning is

completed, the candidate might still be subject to verification, depending on the reported

types. Finally, the resource is allocated to the candidate if there was no verification, or if the

candidate was found truthful. A candidate that does not do the necessary money burning

or found to be lying is punished by withholding of the object. Notably, as discussed in our

examples, bureaucratic requirements precede external audits in optimal direct mechanisms.

In much of standard mechanism design, finding an optimal direct mechanism boils down

to the optimal selection of allocation probabilities. In particular, an educated guess of the

binding incentive constraints is enough to deduce the optimal usage of the instrument in

question.1 The inclusion of multiple instruments requires new techniques. To see why, con-

sider, for instance, money burning in isolation. Suppose an incentive constraint is binding

for an agent: she is indifferent between reporting her “type” to be t or t′. If the correspond-

ing interim allocation probabilities for types t and t′ are known, the difference between

money burning for the two types can be readily inferred: it is simply the difference in ex-

pected payoffs due to the allocation for the agent reporting t and t′. Thus, in such settings,

deducing the set of binding incentive constraints gets us a long way toward a full charac-

terization. In contrast, with two instruments, this is not the case. A binding constraint for

an agent could be generated via different combinations of the two instruments. Therefore,

optimization of the instruments becomes necessary even both allocation probabilities and

binding incentive constraints are known. Moreover, when dealing with two instruments,

restricting attention to a particular set of constraints ex ante is also not feasible. In fact,

even when the allocation probabilities are fixed, different usages of instruments result in

different sets of binding incentive constraints.

The main technical contribution of the paper is to show that the three components of an

optimal mechanism: the set of binding constraints, the optimal usage of instruments, and

the optimal allocation probabilities, can be optimized in a “modular” fashion. In essence, an

optimal mechanism simultaneously chooses both the interim allocation probabilities, as well

as the usage of instruments. Clearly, in an optimal direct mechanism that is truthful, no

agent will shirk from the required money burning on path. Thus, we can restrict attention

to the objective and the constraints at the interim stage, where the agents know their

own types and form expectations of the outcome. Due to risk neutrality, the principal’s

objective and the interim expected utilities of agents are linear. Our approach relies on

combining linear programming and polymatroid optimization. Border (1991) shows that

1This could be ex-ante guessing that only local constraints (type t pretending to be t+1 or t− 1) would
be binding, or there would be cutoff type who has binding constraints.
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feasible interim allocation probabilities come from a polytope called a polymatroid. First,

suppose the usage of instruments is fixed by an outside party. Then the decision maker still

needs to choose interim allocation probability for each potential productivity level while

respecting the incentive constraints. However, which constraints end up binding depends on

the allocation probabilities. This optimization of allocation probabilities is the polymatroid

optimization problem, subject to incentive constraints. On the other hand, now suppose

the interim allocation probability of each productivity level is fixed. Then the decision

maker still needs to use the instruments optimally, while respecting incentive constraints.

In this scenario the set of binding constraints depend on the usage of instruments. This

optimization of instruments is the linear optimization problem, since the expected interim

utilities are linear. In principle, these two problems have to be solved together, but we show

that once some basic properties are established, then they can be solved separately without

knowing the solution of the other.

The polymatroid structure enables us to identify feasible perturbations to allocations.

Since the instruments are also choice variables, we can make perturbations to allocations

and instruments as a whole, which in turn alters the set of binding constraints.2 The

linearity of the objective and the constraints allows us to easily assess the resulting gain or

loss in the objective from any such perturbation. Thus, we can rule some constraints to be

never binding in an optimal mechanism to attain some monotonicity properties: i) utilities

are increasing; ii) only upward constraints can bind; and, iii) there is an endogenous pooling

cutoff. The types below this endogenous cutoff are treated identically and hence are pooled.

They are not subject to any instrument, but they have the lowest allocation probability.

The setting also has an exogenous cutoff, which is the smallest type that has a productivity

higher than the cost of verification. The characteristics of the optimal usage of instruments

are completely determined by the ordering of these two cutoffs.

We use standard linear programming techniques to figure out the usage of instruments

for any mechanism that satisfies the basic monotonicity properties mentioned above.3 We

show that if the endogenous cutoff is above the exogenous one, then money burning is

completely absent. The mechanism only uses costly verification and, in fact, the mecha-

nism corresponds to the mechanism studied in Vohra (2011) and Ben-Porath et al. (2014)

with symmetric agents. On the other hand, if the endogenous cutoff is below the exoge-

nous cutoff, then the instruments are used in a complementary manner. Specifically, the

mechanism involves only money burning for the types below the exogenous cutoff. Among

these lower types (below the exogenous cutoff), the level of money burning is increasing.

2This is in stark contrast to the case where the instruments are inferred from binding incentive constraints.
3Notably, these characteristics remain optimal for any allocation probability, with any collection of bind-

ing constraints that satisfies the basic monotonicity properties.
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For these lower types verification is simply inefficient; thus, money burning is the only

option to differentiate them. For the higher types, verification is introduced along with

money burning. Specifically, all higher types have the same amount of money burning as

the exogenous cutoff type, while the verification probability increases with the type. For

higher types, a failed verification and the resulting withholding is a significant loss, thus

it is more efficient to incentivize higher types to be truthful. However, verification cannot

fully substitute money burning. For lower types, withholding is not a big loss, thus higher

types must also have money burning to deter lower types from mimicking them. This is

intuitive in light of our examples and the direct mechanisms we described; even if a report

necessitates scrutiny in the form of an external audit, the bureaucratic requirements (such

as an application process) do not disappear.

Finally, we turn to the allocation probabilities and the cutoffs. Our main contribution

here is to translate the endogenous incentive constraints into monotone side constraints.

This translation also applies to any usage of instruments as long as the basic monotonicity

properties are maintained. After transforming the problem, we rely on the polymatroid

optimization literature (Fujishige (1980)) to determine the optimal allocation probabilities.

The allocation probabilities turn out to be greedy, that is, the highest reported type receives

the object with ties broken uniformly. If the endogenous cutoff is above the exogenous

one, then the optimal mechanism coincides with the one in Vohra (2011) where only costly

verification is used. If the endogenous cutoff is below the exogenous one, then it corresponds

to the lowest type. This means that if money burning is used, it is used to fully differentiate

all the types. With all the instruments identified, the choice of the optimal cutoff, and

therefore the entire optimal mechanism, boils down to a comparison of the two values. We

also identify sufficient conditions to identify the presence of money burning without solving

the problem.

Research on costly verification in mechanism design is not new. The main difficulty that

arises in case of costly verification is the presence of non-local incentive constraints, which

is usually resolved by the identification of a cutoff type. Townsend (1979) models optimal

contracts with costly verification, while Border and Sobel (1987), Mookherjee and Png

(1989), and Dunne and Loewenstein (1995) further explore problems related to costly state

verification. Ben-Porath et al. (2014) and Erlanson and Kleiner (2019) study allocation

problems with multiple agents in the presence of costly verification techniques, and Vohra

(2012) considers a discrete version of the same problem. Li (2020) takes a different approach

by considering a costly verification problem where the designer has limited punishments

available. Mylovanov and Zapechelnyuk (2017) takes a slightly different approach where

verification is done ex-post, with limited punishments. Notable recent contributions also

include Perez-Richet and Skreta (2023) where both local and global incentive constraints
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appear as part of the allocation problem without transfers and Kattwinkel and Knoepfle

(2023) which shows that a cutoff structure remains when the principal also has private

information.

There is also substantial research on money burning in mechanism design. McAfee

et al. (1992), Hartline and Roughgarden (2008), Yoon (2011), and Chakravarty and Kaplan

(2008) all investigate allocation problems involving some form of money burning. Similarly,

much of the literature on money burning addresses the problem in isolation. Money burning

has also been used interchangeably with costly signaling in mechanism design and cheap

talk literature, as seen in Austen-Smith and Banks (2000). When money burning is only

costly to the agent there is clearly no use for verification. In fact the setup reduces to one of

costly signalling. Therefore, we focus on cases where money burnt is costly to both parties.

2 Model

2.1 Basic Setup

There are D agents, denoted by 1, 2, . . . , D. Each agent without the object is assumed to

have a normalized productivity of 0. We assume that each agent i has a productivity (value)

vi associated with the object drawn from an independent and identically distributed (i.i.d.)

distribution F over a finite space V = {1, 2, . . . ,V − 1,V}.

A principal has one object to allocate among the agents. If an agent receives the object,

his share of increased productivity resulting from allocation is r, while the principal receives

a share R, where r,R > 0. This can be interpreted as both the agents and the principal

receiving fixed commissions dictated by an external entity, such as the headquarters of a

large company where the principal corresponds to a branch manager.

Both the agents and the principal are assumed to be risk-neutral. The principal has two

instruments at her disposal: costly verification and money burning. We assume verification

is perfect and the cost for perfect verification of a claim is denoted by k ∈ V , regardless of

the agent’s type (costly only to the principal).4 We further assume that there exists at least

one valuation v ≤ V such that v > k, indicating that verification can potentially be useful.

We will further assume k > 1 so that verification is not so cheap as to render money burning

unnecessary. We define money burning as the agent spending p units of productive time,

which is interpreted as time wasted in unproductive activities. The principal incurs these

costs because the time wasted by the agent directly impacts their productivity. Therefore,

4We assume k ∈ V for notational simplicity; the analysis holds with more cumbersome notation for any
1 < k < V.
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it is costly to both sides at their respective rates r,R.

At the outset, the principal commits to a finite extensive form game (mechanism). The

principal’s objective is to maximize the expected value from the allocation, minus the costs

of any assessments and the costs due to money burning activities. The agents, on the other

hand, aim to maximize their share of the output after accounting for the money burning

they incur. The solution concept for this mechanism is the Bayes Nash Equilibrium.

Throughout the process, we assume the agents have an outside option valued at 0 avail-

able to them; they can quit at any point in the game designed by the principal. This

assumption is fairly natural in many examples. If a researcher is expected to write very

long and tedious applications with little to no probability of receiving a grant, they will

simply quit midway through their application. Similarly, if a town is expected to spend

a large amount of public funds on lobbying without receiving a hospital, they will simply

stop wasting further resources on such endeavors. The direct implication here is that the

ability to quit limits the liability of the agent and prevents them from facing very large

punishments. In particular, the trivial mechanism that checks each claim with vanish-

ing probability and punishes lies with almost infinite amounts of money burning is ruled

out. It is also worth noting that one can consider additional timing restrictions such as

in Mylovanov and Zapechelnyuk (2017), where verification can only be done ex-post but

the punishment is potential partial withholding/repossession of the object. As will soon be

clear, as long as the punishment cannot violate ex-post individual rationality (whether it

is withholding/repossesion, money burning or a combination), such timing restrictions do

not alter the results. For example, whether grant applications are checked before or after

allocation doesn’t matter as long as the punishment for a lie is the removal of said grant (or

its worth), and not assuming that the researcher will be forced to write grant applications

till the end their career without having a chance to ever receive one.

2.2 Revelation Principle

In principle, the mechanism can be quite complex, involving multiple rounds of checks and

money burning. However, it turns out that optimal, truthful, and direct mechanisms take

a remarkably simple form.

Proposition 1 (Direct Mechanisms). The following describes an optimal, direct revelation

mechanism:

1. The principal commits to a selection policy, an inspection policy, and a money burning

policy;

2. Agents report their types to the principal;
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3. Following the selection policy, an agent is selected for Stage 4;

4. The selected agent burns the required money;

5. The selected agent is inspected according to the inspection policy;

6. The selected agent receives the object if there is no inspection, or if the agent is found

truthful upon inspection.

Both the optimality of such mechanisms and the revelation principle are straightforward

extensions of the argument presented in Ben-Porath et al. (2014). Thus, the formal proof of

Proposition 1 is delegated to the online appendix. It is evident that we only need truthful

mechanisms since the principal can simply simulate the BNE of any complicated game after

asking for the types. An agent’s claim is verified only if he is considered for allocation

since there is no point in spending money on inspecting an agent’s claim otherwise. For

maximum penalty, the agents that lie must have the object withheld from them. Money

burning cannot be a punishment as it is costly to the principal, and agents cannot be

required to burn money without a chance of allocation; they will simply leave. Finally,

money burning must precede inspection in an optimal mechanism as inspection is fully

revealing.

The requirement of perfect verification is essential to maintain a direct revelation mech-

anism. This aspect was also acknowledged in Ben-Porath et al. (2014) concerning the

problem with only costly verification, and the reasoning in this setting is identical. In the

absence of perfect verification, there is value in conducting sequential checks, potentially

leading to extensive form games of arbitrary length.

Money burning activities can manifest in various forms, such as imposing extensive

documentation requirements or conducting multiple rounds of time-consuming meetings

that consume valuable resources. We refer to these activities as bureaucracy, which incurs

costs without generating any direct output. The extent of bureaucracy is directly dictated

by the principal. Alternatively, agents can resort to expected lobbying or “buttering up the

boss,” where some amount of time on activities that are not productive is expected by the

principal. Regardless of the specific form, we assume money burning involves engaging in

unproductive activities that do not provide any verifiable information, hence it is different

from (possibly imperfect) information acquisition which is costly to both parties. Albeit

being an interesting extension, imperfect information acquisition through money burning

presents a similar technical challenge to that of imperfect verification and is not considered.
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2.3 Formal Structure and Notation

To facilitate the analysis, it will be convenient to work with a fixed distribution. Thus, we

will first introduce the following change of type space.

Definition 1 (Uniformization and Type Space). For almost any F , we can duplicate types

as many times as necessary to have a type space T = {1, . . . , n} where the distribution over

types is uniform, but the valuations associated with types are only weakly increasing.5 We

will denote the values associated with the types after uniformization as {v1, . . . , vn}. With a

slight abuse of notation, we will use the notation f(v) for v ≤ V to denote how many copies

of valuation v exist. Clearly, f(v)
n is the probability of valuation v under F , and f(v)∑V

i=v f(i)
is

the hazard rate.

The symmetric environment clearly implies that it is without loss to treat duplicate

types identically, as any asymmetry can be randomized over relabeling of type indices.

Thus we will assume duplicate types are treated identically (pooled).

The cost of verification defines an exogenous cutoff, the smallest (index) type where

verification is not a guaranteed loss of value.

Definition 2 (Efficient Verification Level). The efficient verification level, tEF , is the

smallest type where the value exceeds the cost of verification. Formally, tEF = min{t ∈
{1, . . . , n} : vt ≥ k}; the associated value is k.6

We will call types above tEF (including its duplicates with higher indices) “verification-

efficient types” and types below tEF “inefficient types”.

A direct mechanism maps a type profile in TD to allocation probabilities, money burn-

ing requirements, and verification probabilities. Formally, a mechanism is three functions:

pi(ti, t−i) : T
D 7→ R+, ai(ti, t−i) : T

D 7→ [0, 1], and ci(ti, t−i) : T
D 7→ [0, 1]. Here pi(ti, t−i)

is the amount of money burning by agent i. Without loss of generality, we state pi uncondi-

tionally on selection to simplify the statement of incentive constraints. Similarly, ai(ti, t−i)

is the probability of the ith agent being selected in Stage 3 for further review. Finally, we

have (1− ci(ti, t−i)) as the probability that a costly inspection of the selected agent is done

in Stage 5. Thus, ci(ti, t−i) corresponds to the conditional (on allocation) probability of no

verification, capturing the probability of getting away with a misreport.

5The “almost” qualifier is for cases when the probabilities are not rational; any such distribution can be
approximated as closely as desired.

6As noted earlier, if k is not in V , we would simply introduce additional notation for the value of tEF

and proceed analogously.
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Within this setting, the principal wishes to maximize:

E

[
D∑
i=1

[
R(vtiai(ti, t−i)− pi(ti, t−i))−

k

R
(1− ci(ti, t−i)) ai(ti, t−i)

]]
subject to:

rEt−i [vtiai(ti, t−i)− pi(ti, t−i)|ti] ≥ rEt−i

[
vtiai(t̂i, t−i)ci(t̂i, t−i)− pi(t̂i, t−i)|ti

]
∀ti, t̂i

rEt−i [vtiai(ti, t−i)− pi(ti, t−i)|ti] ≥ 0 ∀ti

From the linear structure above, it is clear that different values of r,R can simply be

captured by a change of k. Thus, going forward, we will assume, without loss of generality,

r = R = 1 with k adjusted accordingly.7 Furthermore, since the agent types are i.i.d., it is

without loss to focus on symmetric mechanisms. Thus, we can focus on the interim objects:

At = Et−i [ai(ti, t−i)|ti = t] Interim allocation probability

pt = Et−i [pi(ti, t−i)|ti = t] Interim money burning

ct =
Et−i [ci(ti, t−i)ai(ti, t−i)|ti = t]

Et−i [ai(ti, t−i)|ti = t]
Conditional probability of no verification

Clearly, 0 ≤ ct ≤ 1 since 0 ≤ ci(ti, t−i) ≤ 1. Furthermore, we have pt ≥ 0 for all t ∈ T since

pi(ti, t−i) ≥ 0. Of course, we need to ensure the interim probabilities, At, can be achieved

using an allocation rule. Border (1991) provides us with a characterization of the set of

feasible interim allocations. We use ⟨A⟩ to denote the collection ⟨At⟩t∈T . The inequalities

state that ⟨A⟩ ∈ Rn
+ is feasible if and only if,

D

n

∑
t∈S

At ≤ 1−
(
1− |S|

n

)D

∀S ⊆ T.

For any S, the inequality can be written as
∑

t∈S At ≤ g(S) where we define g : P(T ) 7→ R+

as g(S) = n
D− n

D

(
1− |S|

n

)D
; P(·) denotes the set of all subsets. g(S) is essentially a function

of the cardinality of the set S. One useful property of g is that it is strictly submodular,

thus the feasible set of allocations is a polymatroid.8

In order to provide an intuitive understanding of the polymatroid structure notice that

ex-ante each agent in a symmetric mechanism expects to receive the object at 1/D prob-

ability. If the agent also knows that they are the highest type, their interim expected

probability cannot be 1, or even 1/D in a symmetric mechanism. The highest they can

7Without loss of generality we maintain the assumption this adjusted k ∈ V to avoid additional notational
burden.

8A formal proof is provided in the online appendix for completeness.
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expect is the case where the highest type wins with ties broken at uniform. Say this is some

number a < 1/D. Now, suppose instead the agent knows that they are the second highest

type. Under the same rule as above (highest type wins with ties broken at uniform) the

interim probability they face must be strictly less than a. Thus the sum of the interim

probabilities that are given to the highest type and the second highest type is increasing, at

a decreasing rate, i.e. submodularly in the set size, which defines a consistency requirement.

Under other rules (say the second highest type wins) the probabilities for different types

will differ, but will still need to satisfy an internal consistency of submodular growth. The

polymatroid structure gives a precise definition of such consistent allocation probabilities.

We refer readers to Border (1991) for a complete argument.

Let us denote by the set A the set of all feasible intermediate allocations that satisfy

Border’s inequalities. Thus, we can interpret a mechanism as a tuple M = {⟨A⟩, ⟨c⟩, ⟨p⟩}.
Using symmetry and uniformization, we can write the problem as:

max
⟨A⟩,⟨c⟩,⟨p⟩

∑
t∈T

(vtAt − pt + kAtct − kAt)

s.t ⟨A⟩ ∈ A ; 0 ≤ ctpt ≤ pt ∀t ∈ T ; ct, pt ∈ R+ (F)

vtAt − pt ≥ vtAt̂ct̂ − pt̂ ∀t, t̂ ∈ T (IC)

vtAt − pt ≥ 0 ∀t ∈ T. (IR)

We say that a mechanism M = {⟨A⟩, ⟨c⟩, ⟨p⟩} is feasible if ⟨A⟩ ∈ A and 0 ≤ ct ≤ 1 ∀t ∈ V ;

ct, pt ∈ R+. A mechanism is incentive compatible if it satisfies all IC constraints. When

referring to particular values instead of types, with a slight abuse of notation, we will use a

superscript such as Av, cv, pv to refer to the relevant objects for any t such that vt = v.

2.4 Example Optimal Mechanism and Comparison

Before we proceed further let us analyze a simple example with two agents and compare it

to the scenario with only verification (Ben-Porath et al. (2014)) and only money burning

(Hartline and Roughgarden (2008)). Each agent has a valuation drawn i.i.d. from V =

{1, 2, 3, 4, 5, 6, 7} with P (v = 1) = 19
25 and P (v = x) = 1

25 for all x ̸= 1.The cost of inspection

is k = 4. Table 1 represents an optimal mechanism in the three respective cases.9

First, let us consider the optimal mechanism with only money burning. In this case, one

can see that there is allocative efficiency, all types are differentiated.10 Additionally, when

there is only money burning, the only binding constraints are local constraints. Indeed,

given the incentive constraints, the mechanism is expected to behave very similarly to an

auction with money burning that is strictly increasing in the valuation.

9All numbers are truncated at the third decimal.
10Recall that we must have

∑7
i=1 A

i f(i)
n

≤ 1/D, with n = 25, D = 2 by Border’s Inequalities.
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Both Only Verification Only Money Burning

v Av 1− cv pv Av 1− cv Av pv

1 0.016 0 0 0.018 0 0.016 0

2 0.031 0 0.015 0.018 0 0.031 0.015

3 0.032 0 0.017 0.018 0 0.032 0.017

4=k 0.034 0 0.023 0.018 0 0.034 0.023

5 0.036 0.055 0.023 0.018 0 0.036 0.031

6 0.037 0.081 0.023 0.037 0.501 0.037 0.036

7 0.039 0.128 0.023 0.039 0.527 0.039 0.048

Table 1: An Optimal Mechanism

Now let us consider the optimal mechanism with only costly verification. In this case, we

see that there is inefficient pooling, below (inclusive) an endogenous cutoff value of 5. The

reasoning for this is evident when we consider the verification probabilities: if the principal

wants to lower the cutoff to 4, the verification probabilities of all the types above would

need to increase, along with introducing verification to type 5. Thus, pooling turns out to

be the more efficient option. When we consider the binding constraints, we see that besides

constraints between the pooled types, the only binding constraints are between the cutoff

type 5 and higher types. Notably, there is no binding constraint between type 6 and 7.

And even for differentiating these types the principal suffers a great deal of losses as the

verification probabilities are quite high to deter lower types from misreporting.

Now consider the optimal mechanism where both instruments are available. All types

are differentiated. Money burning is increasing until the exogenous cutoff 4. However, after

4, the money burning plateaus. At a glance verification at a cost of 4 might seem overly

expensive. But recall that 1− c is the conditional probability, the unconditional probability

is Av(1 − cv). For example the principle expects to spend only 0.055 × 0.036 × 4 ≈ 0.007

for verification of type 5, with a total “incentive expenditure” including money burning

of 0.030. One might also ask why it isn’t completely substituted away but remains as a

complement to verification. This is because verification has no cost on the agent. For higher

types, verification is more effective since withholding is a costly punishment to them. For

lower types, withholding is not a big deterrent, thus money burning for higher types is a

cheaper alternative to deter lower types from declaring as high types. Finally, the set of

binding constraints is fairly complex. Type 1 only has a local constraint to type 2, and

type 2 only has a local constraint to type 3. However, type 3 has binding constraints to

all the types above it. Similarly, type 4 also has binding constraints to all the types above

it. For all types that are strictly above k, there are no binding constraints; they strictly

prefer being truthful. Finally notice that money burning first increases and then flattens

out, whereas verification start out flat and then increases.
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3 Results

3.1 Basic Monotonicities

In standard mechanism design, having binding (tight) incentive constraints often simplifies

the problem by reducing it to just choosing allocation probabilities. The usage of instru-

ments, such as required payments, can be deduced from these allocation probabilities. As

the example above demonstrates, in our setting, even if we have knowledge of the allocation

probabilities and the set of tight incentive constraints, determining the verification proba-

bilities or required money burning is not straightforward; some constraints are made tight

with just money burning, some constraints are made tight with both. Narrowing down the

set of tight incentive constraints ex ante by intuition, such as only the local constraints to

be binding, is both potentially erroneous and difficult.

Our first goal is to try to at least limit the set of binding constraints in a more methodical

manner. Our approach will be to see if we can find improvements on a mechanism by

replacing or generating some binding constraints. An important concept that facilitates

in our analysis is the notion of mutually binding incentive constraint set. A set of types

S has jointly mutually binding constraints if, for any pair of types s and t in S, type t

is indifferent between revealing its true type and pretending to be type s, and type s is

indifferent between revealing its true type and pretending to be type t. Note that this does

not exclude the possibility of types outside S wanting to mimic types in S, or types in S

wanting to mimic types outside S; it simply limits these behaviors to one-sided mimicry.

In environments involving only money burning (or some standard scenarios like auctions),

mutually binding incentive constraints are equivalent to pooling, where all types are treated

identically. In cases with only costly verification, pooling is necessary but not sufficient to

establish mutually binding incentive constraints. For example, it is possible to have two

types with the same allocation probability and a strictly positive probability of verification,

causing them to be pooled but without a desire to mimic each other. With two instruments

at play, types may still want to mimic each other despite being treated differently, making

pooling neither necessary nor sufficient.

Our first result demonstrates that by leveraging optimality and mutually binding incen-

tive constraints, we can drop all the downward-facing constraints from the problem and it

remains unchanged. In other words, we can assume only upward constraints bind unless the

types are pooled and have mutually binding constraints. Furthermore, this result provides

a formalization of the extent of substitution that can be inferred directly from incentive

constraints. Specifically, it shows that money burning increases with allocation without

verification.
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Proposition 2. In an optimal mechanism, agents are strictly better off by reporting truth-

fully than any strictly lower value unless the types are pooled and have mutually binding

constraints. Additionally, money burning is strictly monotonic in the probability of alloca-

tion without an assessment, i.e., in an optimal mechanism, Atct > Ascs ⇐⇒ pt > ps and

Ascs = Atct ⇐⇒ ps = pt.

The first part of the proof relies on the following fact: it is possible to “move” higher

allocations to lower ones in a polymatroid. In particular ifAt ≥ At′ for some t, t′ in a feasible

mechanism, then there is a small enough δ > 0 such that At − δ, and At′ + δ, with the

other allocations unchanged, remains feasible in the polymatroid (even if At = At′). These

kind of pairwise perturbations can then be used, along with changes to the instruments,

to figure out some basic, technical, characteristics of an optimal mechanism (Lemmas 2, 3,

4, 5, 6). When combined, these characteristics are then used to show the statement of the

proposition by simply appealing to the fact that there cannot be any objective-improving

perturbations while respecting these basic characteristics.

The second part of the proposition, which can be straightforwardly derived from in-

centive compatibility, is of particular importance. It is noteworthy that the proposition’s

statement does not make any assumptions regarding the presence of money burning in the

mechanism. In particular, when there is no money burning, for any pair of types t and

s, we have Ascs = Atct. In the case of costly verification alone, this observation alone is

sufficient to determine the optimal usage of verification, as demonstrated by Vohra (2012).

Furthermore, it is worth noting that this type of monotonicity resulting from incentive

compatibility alone does not provide significant information by itself, as it is difficult to

ascertain whether Atct or pt should increase or decrease with respect to the type.

A more desirable aspect of monotonicity relates to allocation probabilities and utilities.

It turns out in an optimal mechanism, higher types are indeed associated with higher alloca-

tion probabilities. This intuition aligns with the principal’s interest in achieving allocative

efficiency. Moreover, since we have established that only the upward constraints are bind-

ing, we can expect higher types to enjoy higher incentive rents and, consequently, higher

expected utilities.

Proposition 3. In an optimal mechanism, higher types have higher interim allocation

probabilities, i.e., vt > vt̂ =⇒ At ≥ At̂. Furthermore, higher types also have higher expected

payoffs, i.e., vt > vt̂ =⇒ vtAt − pt ≥ vt̂At̂ − pt̂.

For proving these results, we show that if the proposition is not true, then the higher

type must have a positive inspection probability, which eventually leads to a contradiction

of optimality. It is noteworthy that monotonicity results such as Proposition 3 only require
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incentive compatibility in much of the classical mechanism design literature. However, with

two instruments, incentive compatibility is not enough, and we must use optimization.

While Propositions 2 and 3 provide desirable and intuitive results, additional structure

is still necessary to determine verification probabilities and money burning. Our analysis so

far establishes that the binding constraints are always upward-looking, but they need not

be local, so the structure is still quite loose. Our next result delivers the first structural

component, the endogenous cutoff.

Proposition 4. Each optimal mechanism adheres to a structure in which there exists a

threshold value t ∈ T such that types with valuations vt less than or equal to vt undergo

neither verification nor money burning. Conversely, types with valuations exceeding this

threshold, vt > vt, are subject to either a positive probability of verification, some degree of

money burning, or both. Additionally, all types falling below this threshold have the lowest

probability of being implemented, specifically, At = minr∈V Ar for all t ≤ t..

Since lower types have a lower chance of allocation, it is not expected that these very low-

value types would typically undergo assessment or involve significant money burning. This

intuition is formalized through the introduction of a cutoff, where types below the cutoff

have a fixed probability of allocation. No money burning is required for these low-value

types, and verification is also not employed.

The proof of this result relies on several auxiliary results that capture the properties of

an optimal mechanism and their relation to mutually binding incentive constraints sets. In

the appendix, we first establish that optimality requires any cycle of incentive constraints

to be in a mutually binding incentive constraint set. For example, suppose t wanted to

mimic t′ and t′ wanted to mimic t′′ and t′′ wanted to mimic t, forming a cycle. Optimality

will dictate that, in fact, we must have that the desire to mimic is mutual between any

pair from {t, t′, t′′}. (Recall this still doesn’t rule out say t′′ wanting to also mimic some

type t′′′, where t′′′ is not part of the cycle). Moreover, optimality will again show that in

a mutually binding incentive constraint set with more than one type, all the types must

have the same amount of money burning, chance of allocation, and no verification (Lemma

9), ergo, they are pooled. Finally, in every optimal mechanism, there is a unique mutually

binding incentive constraint set with no outside types wanting to mimic any type within the

set (Lemma 10). No outside types wanting to mimic any inside type implies there cannot

be any no money burning in this minimal set either, reinforcing the idea that these types

should be grouped at the bottom, giving rise to a cutoff structure.

Remark 1. It is important to note here the structure at this point is far from complete; we

have only ruled out some sets of binding constraints but we have not identified any particular
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collection. Moreover, our understanding of the usage of instruments is also fairly limited.

However, it is worth noting that only this amount of structure is enough to actually identify

all the allocation probabilities for any endogenous cutoff, despite the incentive constraints

still remaining somewhat undetermined. It is also important to note that our analysis so

far uses some basic tools from graph theory in addition to standard optimization arguments

as we detail in the appendix similar to the analysis in Vohra (2012) and Vohra (2011).

3.2 Optimal usage of Instruments

To advance our analysis, we will now shift our attention to another structural element of

the problem, namely the instruments. Essentially, our problem can be conceptualized as

a polymatroid optimization problem with incentive constraints. Incentive constraints are

inherently linked to the set of binding constraints, about which we have limited information.

Therefore, our initial approach revolves around determining the optimal use of incentive

instruments given any allocation. This step is not typically required in many standard

mechanism design frameworks, where binding incentive constraints directly dictate the use

of instruments based on allocation.

Proposition 4 identifies an endogenous cutoff type t. However, it’s essential to recall

that in our problem setup, there’s also an exogenous cutoff, tEF , representing types not

considered “worth” verifying due to the associated cost. As we will soon demonstrate, the

interaction between t and tEF significantly influences the optimal use of instruments.

Proposition 5. Let t be the cutoff type in an optimal mechanism, and let vt ≥ k. Then,

pt = 0 for all t, and ct =
At

At
for all t ≥ t.

To gain intuition, let’s first observe that if there is a type associated with money burning,

no type below the cutoff can mimic this type. The reasoning behind this is straightforward:

if that were the case, the incentive constraint of the cutoff type would be violated. Since

we are considering the scenario where the cutoff type itself is verification-efficient, the

only incentive constraints exist among efficient types. However, given their already high

valuation, verification-efficient types are willing to burn a significant amount of money.

Therefore, it’s always worthwhile to substitute money burning for verification to induce

higher types to be truthful.

Proposition 5 also speaks to the environments when money burning is completely pro-

hibited. The optimal mechanism is characterized by a cutoff type as in Proposition 4, and

verification probabilities are precisely determined by the ratio of allocation probabilities, as

observed in Proposition 2. This result mirrors the findings of Ben-Porath et al. (2014) and

Vohra (2012).
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On the other hand, when the endogenous cutoff falls below tEF , money burning becomes

a necessary component of an optimal mechanism. In fact, as we will demonstrate, for

all types below tEF but above the cutoff, money burning is the only instrument utilized.

This intuitively makes sense, as attempting to verify these types would not be worth the

associated cost. Additionally, the required level of money burning increases monotonically

until tEF . Formally, we have:

Proposition 6. Let t be the cutoff type in an optimal mechanism, and let vt < k. For all

t ≤ tEF , ct = 1, pt = vt−1(At −At−1) + pt−1, with pt = 0. Additionally, if vt−r = vt−1 for

any r ≤ t− 1, then, pt = vt−r(At −At−r) + pt−r.

Building upon the above result, our next aim is to consider the usage of incentive instru-

ments for types above tEF . For these types, verification is not a guaranteed loss as the cost

of verification is below their value. Indeed, the principal starts using verification for these

types. One might potentially consider whether the principal would like to substitute away

from money burning completely for these types; after all, verification is perfect. However,

as we show below, the types above tEF have both money burning and costly verification.

Proposition 7. Let t be the cutoff type in an optimal mechanism, and let vt < k. Then for

all t > tEF , pt = ptEF (including the duplicates of tEF with higher indices), and ct =
A

tEF

At
.

In addition to providing a comprehensive understanding of the instrument usage for

a sufficiently low cutoff value, the aforementioned result reveals intriguing monotonicity

properties. Money burning reaches its peak at tEF and remains constant thereafter, while

the verification probabilities initially remain constant at 0 but then increase monotonically.

For verification-efficient types, money burning is relatively insignificant compared to the

potential loss resulting from withholding due to failed verification. Therefore, it emerges as

the more efficient option for maintaining incentive constraints among these types. However,

lower types still need deterrence from misrepresenting themselves as verification-efficient

types; hence money burning remains a necessary component. Notably, instead of completely

replacing money burning, verification acts as a complement to it.

The proofs of Propositions 6 and 7 rely on standard linear programming techniques.

Using duality, we show that the type immediately above the cutoff only needs to have a

positive payment and no verification, and by induction, we extend it to all the types below

tEF . For the types above tEF , the upper bounding technique for the simplex algorithm

(Eiselt and Sandblom (2007), pp. 212-218) delivers that these types must be subject to

verification, but the optimal way to introduce verification turns out to be fixing the money

burning for these types.
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3.3 Allocation

At this juncture, having fully understood the utilization of the instruments for any set of

allocation probabilities, our next objective is to determine these allocations precisely. In an

auction where transfers from the agents to the principal take place, withholding or pooling,

thus, allocative inefficiency is not required. However, the findings presented above indicate

that a combination of costly verification and money burning alone cannot fully compensate

for the absence of transfers unless the cutoff is the lowest type. As a result, allocative

inefficiency via pooling is observed, but it is confined solely to the types below the cutoff.

Additionally, as we will soon demonstrate, the allocation above the cutoff is greedy, similar

to an auction, thus the highest announced type receives the object, breaking ties uniformly.

Proposition 8. Let V be the space be the space of let f(v) denote the number of duplicates

in T . Let Av = At denote the allocation probability of for any type t ∈ T with vt = v. In

any optimal mechanism, for a given cutoff t with value v, the probability of allocation for

any type t with value vt is given by

AV =
g(f(V))
f(V)

AV−1 =
g (f(V) + f(V − 1))− g(f(V))

f(V − 1)

...

Av =
g
(∑V

i=v f(i)
)
− g

(∑V
i=v+1 f(i)

)
f(v)

Āv :=
g
(∑V

i=1 f(i)
)
− g

(∑V
i=v+1 f(i)

)
∑v

i=1 f(i)

Where Āv denotes the probability of allocation for any given type that is below or equal to

the cutoff type v.

Many mechanism design problems beyond this setup fall into a category of problems

called polymatroid optimization with incentive constraints (see Border (1991), Vohra (2012)),

and the methodology of tackling them and how they relate to polymatroid optimization with

monotone side constraints might be of independent interest. Thus, let us briefly sketch the

argument for the proof of Proposition 8. Proposition 2 shows that an optimal mechanism

has an endogenous cutoff type t. Given a cutoff, we first take ⟨Ac, p⟩ (neither being neces-

sarily the optimal ones we derived above) as given and ask what the optimal ⟨A⟩ is. Notice
changing ⟨A⟩ while taking ⟨Ac⟩ as given is equivalent to changing c (equivalent to solving a

relaxed problem where c > 1 is allowed). Due to Proposition 2, for each potentially binding

IC regarding t′ ≥ t, we can let dt,t′ = At′ct′ −
pt′
vt

+ pt
vt

and let dt = maxt′≥t{dt,t′}. Define
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the associated polytope P(Ac, p) = {
∑

i∈S Ai ≤ g(S), S ⊆ T ;Ai ≥ di, i ∈ T}. The optimal

A′s given Ac, p’s solve the following problem:

max
⟨A⟩∈P (Ac,p)

n∑
t=1

vtAt

This is a linear optimization over a polymatroid identified by the set function g(S) and side

constraints di. At this point, we don’t know the values of individual d′is, but by Proposition

3 and feasibility, we can restrict attention to di’s that are weakly monotone. Clearly, if

(d1, . . . , dn) /∈ P(Ac, p) then the problem is not feasible. If the problem is feasible, by

proposition 2.2 of Fujishige (1980), we can consider the contraction of the polymatroid with

respect to the constraints di, which in turn also defines a polymatroid without constraints.

This polymatroid consists of all the vectors (Bi)i∈{1,...,n} such that (Bi + di)i∈{1,...,n} is

feasible in the original polymatroid. In particular the function g(S) is replaced by a function

ρ(S) = minS′⊇S(g(S
′)−
∑

i∈S′ di). The weak monotonicity of the d′is turns out to be enough

to identify the structure of this new polymatroid. This new polymatroid problem then can

be simply solved by a greedy algorithm starting from the highest type since there are no

more side constraints. Given the form of the contraction from B’s, we can back out A’s for

the given Ac, p. We then show that if the resulting A’s are not of the stated form Ac, p

cannot be optimal.

Remark 2. The allocation problem is tackled by solely considering the weak monotonicity

properties (section 3.1). This analysis does not necessitate specific knowledge of instrument

usage or the set of binding constraints. In fact, the usage of the instruments can be calcu-

lated by standard linear programming methods algorithmically after finding the allocations

here. Furthermore, up to this point, the analysis does not depend on any properties of the

distribution, such as the structure of the set V or the hazard rate assumption.

3.4 Optimal Cutoff

With the mechanism fully determined based on the cutoff, the final step is to identify the

optimal cutoff itself. Unlike the characterization up to this point, the distribution now

starts to play an important role. Thus, from this point onward, we will directly use the

values instead of the duplicated types.

The presence of money burning is closely tied to the cutoff, making it essential to explore

both scenarios: with and without money burning. In particular, we can try to start from 1

as the cutoff, where there is allocative efficiency, and slowly increase the cutoff to calculate

the effect on the total payoff. The only difficulty we would face is that when the cutoff

reaches k, there will necessarily be a discontinuity since money burning is going to vanish.
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Letting Π(v) denote the payoff of the principal when the cutoff is v, we provide a discrete

analogue of the derivative with respect to the cutoff in the following two lemmas. First, we

consider an increase with the cutoff still remaining below k.

Lemma A. If the cutoff is below the efficient verification level, v < k − 1,

Π(v + 1)−Π(v) ∝
v∑

i=1

f(i)(i− 1

h(v + 1)
)

∝ E(v − 1

h(v + 1)
|v ≤ v).

Where 1
h(v+1) is the inverse hazard rate at v + 1.

There are a few noteworthy points regarding the above. First, the characterization

continues to hold for Π(k)−Π(k−1). Second, under the monotone hazard rate assumption,

the inverse hazard rate is non-increasing, thus, this derivative is necessarily increasing. This

has a direct implication: if there is money burning it comes with full separation of types

and thus allocative efficiency. To see this suppose the cutoff below the efficient verification

level is k > v̂ > 1. This means that it was worthwhile to increase the cutoff from v̂− 1 to v̂,

but the above lemma directly implies that in that case it would be optimal to it all the way

to k. Thus if money burning exists then the endogenous cutoff is a trivial one, i.e. v = 1.

Now let us consider the analogue of the discrete derivative when the cutoff considered

is above k.

Lemma B. If the cutoff is above the efficient verification level, v ≥ k,

Π(v + 1)−Π(v) ∝
v+1∑
i=1

(i− (v + 1))f(i) + k

V∑
i=1

f(i)

∝ E(v − v + 1|v ≤ v) +
k

P (v ≤ v)
.

In this case, it is easy to see that the derivative is decreasing as the cutoff increases,

since
∑v+1

i=1 (i − (v + 1))f(i) is decreasing in v. Therefore, a candidate for the cutoff when

there is no money burning is the level where the derivative first becomes negative. Clearly,

if the derivative is negative throughout, then k is the only candidate when the mechanism

doesn’t have money burning. Conversely, if the derivative is positive throughout, then V
is the cutoff without money burning, and all the types are pooled. Unlike the previous

lemma, it turns out the above characterization of the derivative is robust to changes in the

distribution.
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With the two preceding Lemmas, the cutoff simply boils down to checking level where

the derivative becomes negative for the no-money-burning case and comparing it to the

cutoff of 1.

Theorem 1. Let vNoMB = max{V > v̂ ≥ k : E(v− v̂+ 1|v ≤ v̂) + k
P (v≤v̂) ≤ 0} if the set is

non-empty, and V otherwise. Then the optimal cutoff solves

arg max
v∈{1,vNoMB}

Π(v)

Since we did not restrict V or k, and the distribution beside the monotone hazard rate

assumption, ex-ante, necessary and sufficient statements about the presence of money burn-

ing or not are difficult to make. Nonetheless, the two lemmas preceding the theorem are

sharp characterizations of the cutoffs in either case. Thus, combined with the complete char-

acterization of the rest of the mechanism, identifying the cutoffs boils down to comparing

easy-to-calculate payoffs.

We can also identify easy sufficient conditions to check for the presence of money burning

using Lemmas A and B.

Corollary 1. If E(v − 1
h(k) |v < k) < 0 and E(v − k + 1|v ≤ k) + k

P (v≤k) < 0, then the

optimal mechanism has money burning.

The first condition of the corollary simply guarantees that it is worth it to lower the

cutoff from k to k − 1, introducing money burning. Then, by Lemma A we know that

lowering the cutoff all the way down is worth it. This is a necessary condition for money

burning to exist. However, by itself it is not sufficient since it is possible that increasing

cutoff above the level k might also lead to an increase in the objective and which one is

larger depends on the specifics of the distribution, values and k. The second condition

guarantees that increasing the cutoff from k to k + 1 results in a loss. Then, by Lemma B

we know that increasing the cutoff will only accrue more losses.

We can also determine sufficient conditions to check when money burning is not part of

the optimal mechanism.

Corollary 2. If the inverse hazard rate of type 2 is low enough, 1 − 1
h(2) > 0, then the

optimal mechanism has no money burning.

Recall that E(1 − 1
h(2) |v ≤ 1) ∝ 1 − 1

h(2) , that is the condition is simply capturing the

marginal gain to increasing the cutoff. The corollary follows from the fact that the inverse

hazard rate is non-increasing under monotone hazard rate assumption, guaranteeing the

marginal gains to increasing the cutoff increases until k. It is only sufficient, because it is
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possible that E(1− 1
h(2) |v < 2) < 0 but it becomes positive enough before k eliminating the

need for money burning.

It is also worth noting that the analysis up to the determination of the cutoff is com-

pletely independent of both the set of values (i.e., it can have holes) or whether the distribu-

tion has monotone hazard rate or not. The difficulty without the structural assumptions is

that the analogue of the discrete derivatives stops being monotone when those two assump-

tions are dispensed. In principle, this means that the optimal cutoff (which can now also

be larger than 1 with money burning) can still be found by simply comparing associated Π

for each v and picking the largest one. This is easy to do in small applications, but quickly

becomes cumbersome as the value space gets larger.

3.4.1 Comparative Statics

As suggested by Theorem 1, conducting broad comparative statics without imposing strin-

gent assumptions is challenging within this framework. Two main difficulties arise, limiting

the extent of the analysis. Firstly, the presence of the hazard rate of the cutoff, as op-

posed to the virtual valuation, indicates that simple first-order or second-order stochastic

dominance shifts generally do not provide conclusive results. Secondly, the polymatroid

base introduces another obstacle. It can be shown, for instance, that the At terms are all

decreasing in D, but this decrease follows a non-monotonic pattern.

However, the cost of verification is amenable to analysis without additional assumptions.

It is worth noting that the relationship between R and r can be captured by a change in the

cost of verification k. Hence, if the choice of R and r (with some tradeoff) is also considered,

the overall impact can be comprehended through the effect of the cost of verification.

Proposition 9. The optimal cutoff t is increasing in the cost of verification k. Conse-

quently, the probability of verification, 1− ct, is weakly decreasing in k for all t.

The insight behind this result is somewhat nuanced. As the cost of verification increases,

the principal faces the option to rely more on money burning and decrease dependence on

verification, while maintaining allocation probabilities unchanged. However, the changing

value of tEF adds complexity to the relationship.

If the original mechanism had no money burning, an increase in the cost of verification

resulting in an increase of tEF might imply that there are now more types below tEF (even

the previously optimal cutoff might now be pooled), and the principal might want to screen

some of them at the cost of introducing money burning. On the other hand, the required

money burning to separate the types also changes with an increase in tEF . Specifically, an

increase in tEF leads to an increase in the required money burning for types above the new
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tEF , while the money burning for other types remains the same. Thus, the principal also

simultaneously faces a larger money burning bill as a result of the increase in the cost of

verification. It turns out this increase in money burning is enough to outweigh the potential

gain of screening types that fell below tEF , leading to a weak increase in the cutoff.

The weakly increasing cutoff implies that verification probabilities decrease, as shown

in Propositions 5 and 7. Therefore, as the cost of verification increases, the amount of

verification and the associated costs in the mechanism weakly decrease.

When examining the relationship between money burning and the cost of verification,

Propositions 6, 7, and 9 may initially suggest that money burning increases since tEF

increases. If money burning does remain present it indeed increases. On the other hand, if

the cutoff does increase, our theorem 1 indicates that money burning vanishes altogether.

However, much like theorem 1, whether money burning vanishes or not depends on the

specifics of the distribution and valuations.

4 Conclusions and Discussion

We have developed a model with minimal assumptions. The principal is allowed to use

costly inspection and observable money burning activities for optimal allocation. From

a mechanism design perspective, we observe that when money burning activities are not

available, there is significant pooling. Money burning activities enable the principal to

discourage low types from mimicking high types, thereby avoiding unnecessary pooling or

eliminate high verification probabilities. Contrary to the perception that money burning

activities merely destroy surplus, they can serve as a useful instrument for reducing incentive

rents, which cannot be directly substituted.

On the technical front, we approach the mechanism design problem with non-local incen-

tive constraints and multiple instruments. The potential applicability of a similar approach

to other mechanism design problems is of interest. Traditionally, mechanism design does

not require complex optimizations to handle the use of incentive instruments, thanks to

the simplifications provided by an implicit understanding of binding constraints. However,

our work demonstrates that in the absence of such an understanding, studying previously

unexplored objects such as mutually binding incentive constraints and their interaction

with maximization can be a fruitful endeavor. Additionally, the translation of polymatroids

incentive constraints into associated polymatroids with side constraints is a potentially valu-

able technique that can be applied to a broader range of problems. Notably, the allocation

of multiple objects with incentive constraints shares a similar polymatroid base, making our

techniques applicable in such scenarios. We aim to address this in future research.
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5 Appendix

Definition 3 (Transform of a Mechanism). M∗ is a transform of the mechanism M denoted

as M∗ = TM,r,s (A′
r,A′

s, c
′
r, c

′
s, p

′
r, p

′
s). If M∗ = {⟨A∗⟩, ⟨c∗⟩, ⟨p∗⟩} then A∗

r = A′
r; A∗

s = A′
s;

c∗r = c′r; c
∗
s = c′s; p

∗
r = p′r; p

∗
s = p′s; A∗

t = At ∀t /∈ {r, s}; c∗t = ct ∀t /∈ {r, s}; p∗t = pt ∀t /∈
{r, s}.

In order to simplify the optimization of the binding constraints we propose interpreting a

mechanism M as a directed graph. In particular, we will be using the edges to represent the

binding constraints. This provides us a convenient language to analyze effect of changing

the binding constraints. Let GM be the directed graph that represents the mechanism M .

Let E(GM ) be the set of edges where (s, t) ∈ E(GM ) means that there is a directed edge

originating at s and pointing towards t in GM . Since all graphs we consider have the same

vertex set, we simply use T to denote the set of vertices. We say that (s, t) ∈ E(GM ) if the

incentive constraint for type s pretending to be type t is tight. That is (s, t) ∈ E(GM ) if

and only if

vsAs − ps = vsAtct − pt

We call a graph GM associated with an optimal mechanism M an optimal graph.

Definition 4 (In-Out Sets). For any t ∈ V let deg−M (t) denote the indegree of t and let

deg+M (t) denote the outdegree of t in GM . The in-set of type t is iM (t) = {r : (r, t) ∈
E(GM )} out-set of type t is oM (t) = {r : (t, r) ∈ E(GM )}. For any S ⊆ V in-set of S is

iM (S) = {t ∈ V \S : (t, s) ∈ E(GM ) for some s ∈ S}.

The edges originating from a node t are the types that type t wants to mimic, and

the edges pointing to a node t are the types that want to mimic t. A set of types with

mutually binding incentive constraints corresponds to a special structure on a graph

known as a web.

Definition 5 (Web). W ⊆ T is a web in GM iff (s, t) ∈ E(GM ) ∀s, t ∈ W . A web W is

non-trivial if |W | > 1.

In essence, a web is a set of types where every node points to every other node in W , and

no more nodes can be added to it while still having every node pointing to every other node.

A web necessarily contains directed cycles, but directed cycles need not contain webs. There

can be outside types pointing to a web or types in a web pointing outside. For example if

the set of edges is {(t, t′), (t′, t), (t, t′′), (t′′′, t)}, the collection {t, t′} is a web, since the edges
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are mutual, t′′ or t′′′ does not belong in a web despite the former being pointed to by t and

the latter pointing to t.

Lemma 1. Let ⟨A⟩ ∈ A and At ≥ As for some s, t, then ∃ δ > 0 such that ⟨A′⟩ ∈ A ,

where A′
t = At − δ, A′

s = As + δ and A′
r = Ar ∀r /∈ {s, t}.

Proof. Consider an arbitrary S ⊆ V \{s, t}. Let St ≡ S ∪ {t}, Ss ≡ S ∪ {s}. Since As ≤ At

we can write ∑
r∈Ss

Ar ≤
1

2

[∑
r∈S

Ar +
∑

r∈St∪Ss

Ar

]
We need to show, ∑

r∈S′

A′
r ≤ g(S′) ∀S′ ⊆ V

For the sets that do not contain s, or contain both s, t the inequality holds trivially. Since

S is arbitrary and δ can be arbitrarily small, we need to show:∑
r∈Ss

Ar < g(Ss)

Since g is strictly submodular

g(Ss ∪ St) + g(S) < g(Ss) + g(St)

=⇒
∑
r∈S

Ar +
∑

r∈St∪Ss

Ar < g(Ss) + g(St)

=⇒ 2
∑
r∈Ss

Ar < g(Ss) + g(St)

=⇒
∑
r∈Ss

Ar < g(Ss) ∵ g(Ss) = g(St)

Lemma 2. In an optimal M if deg−M (t) = 0, then pt = 0; ct = 1 and At = minr∈V Ar

Proof. If pt > 0 then define M ′ = TM,s,t(As,At, cs, ct, ps, pt − δ) for small δ > 0 then M ′ is

feasible and a δ improvement. If ct < 1 then define M ′ = TM,s,t(As,At, cs, ct + δ, ps, pt) for

small δ > 0 then M ′ is feasible and a kAtδ improvement. If At > As for some s we then

must have vsAs − ps < vsAt. Since ps ≥ 0, IC of s is violated.

Lemma 3. In an optimal M if iM (t) = {t′ ∈ T : vt′ = vt}, then pt = 0; ct = 1 and

At = minr∈V Ar
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Proof. Recall that all duplicates are treated identically. If pt > 0 then simply lower pt for

all duplicates for small δ > 0 this is feasible and a δf(v) improvement. If ct < 1 then

similarly just increase ct for all duplicates for small δ > 0 resulting kAtδf(t) improvement.

If At > As for some s we then must have vsAs−ps < vsAt. Since ps ≥ 0, IC of s is violated.

Lemma 4. In an optimal M , minsAscs ≥ minsAs

Proof. Suppose not. Consider r, t be such that Arcr = minsAscs and At = minsAs then

Arcr < At, and cr < 1. Now, we must have deg−M (r) = 0 otherwise there must be an r′ such

that (r′, r) ∈ E(GM ) but then vr′At > vr′Arcr − pr = vr′Ar′ − pr′ violating IC. However, if

deg−M (r) = 0 then cr = 1 due to Lemma 3 a contradiction.

Lemma 5. In an optimal, incentive compatible mechanism M if (t, t̂) ∈ E(GM ) then

At̂ct̂ ≥ At

Proof. Suppose not, and let At̂ct̂ < At, then it must be that pt > pt̂ ≥ 0. Consider

M ′ = TM,t,t̂(At̂ct̂,At̂, ct, ct̂, pt̂, pt̂)

M ′ is feasible. Incentive constraints not involving the type t remain unaffected. For r ∈
oM (t), we have

vtA′
t − p′t = vtAt̂ct̂ − pt̂

= vtAt − pt ∵ (t, t̂) ∈ E(GM )

≥ vtArcr − pr ∀r ̸= t

= vtA′
rc

′
r − p′r

For all r ∈ T , thus also all r ∈ iM (t) we have

vrA′
r − p′r = vrAr − pr ≥ vrAt̂ct̂ − pt̂ ≥ vrAt̂ct̂ct − pt̂ = vrA′

tc
′
t − p′t

Thus, all incentive constraints are satisfied. The objective is increased by,

Obj(M ′)−Obj(M) = k(1− ct)(At −At̂ct̂)

This is positive if ct < 1 giving a contradiction. If ct = 1 then we have deg−M (t) > 0

otherwise Lemma 3 and Lemma 4 jointly give us a contradiction since At > At̂ct̂. Since
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deg−M (t) > 0 let r′ ∈ iM (t) and r′ < t. If vr′ < vt then

vtAt − pt = vtAt̂ct̂ − pt̂

=⇒ vr′(At −At̂ct̂) < pt − pt̂ ∵ At > At̂ct̂;

=⇒ vr′Ar′ − pr′ < vr′At̂ct̂ − pt̂ ∵ ct = 1; (r′, t) ∈ E(GM )

Again, giving us a contradiction. So we must have vr′ ≥ vt for all r′ such that (r′, t) ∈
E(GM ) and ct = 1. Also recall that all duplicates are pooled thus all share the same in-set.

Given above consider lowering pt for all duplicates for small δvt since pt > 0 and also

lowering At for all duplicates by δ. For any r′ such that (r′, t) ∈ E(GM ) we have

vr′Ar′ − pr′ = vr′At − pt

=⇒ vr′Ar′ − pr′ ≥ vr′(At − δ)− pt + δvt ∵ vr′ ≥ vt

=⇒ vr′Ar′ − pr′ ≥ vr′A′
t − p′t

Notice for all types that were not the in in-set of t originally, their incentive constraint

regarding t and its duplicates were strict. Thus a small enough δ maintains those strict

incentives. For the types that were previously in the in-set, the above inequality becomes

strict for non duplicates, hence the in-set reduces to {t′ ∈ T : vt′ = vt}. Hence we have

A′
t ≤ At̂ct̂ due to lemma 3 and lemma 4 but for δ small enough we still must have A′

t ≤
At̂ct̂ < A′

t = At − δ which is a contradiction.

Lemma 6. If M is optimal, (s, t) ∈ E(GM ) and As = Atct then cs = 1.

Proof. If s has indegree zero then Lemma 3 delivers the result. Thus, assume ∃r such that

(r, s) bind, and let cs < 1. Since As = Atct and vsAs − ps = vsAtct − pt we have ps = pt.

Since (r, s) bind,

vrAr − pr = vrAscs − ps

= vrAtctcs − ps

< vrAtct − pt

contradicting the IC constraint.

Proof of Proposition 2. The second part of the proposition is proved separately as Lemma

7. For the first part, suppose not and let vs > vt but s points to t. Note that Lemma 5

gives us At ≥ As. Also note that we cannot have At = 0 as that would imply both s, t

are outside the mechanism with zero allocation no money burning and no verification. We
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consider four cases,

Case I: ct < 1; oM(t) ̸= ∅
Let r ∈ oM (t). We have,

vtAt − pt = vtArcr − pr

=⇒ pr − pt ≤ vs (Arcr −At) ∵ vs > vt; Arcr ≥ At due to Lemma 5

=⇒ pr − pt < vs (Arcr −Atct) ∵ ct < 1

=⇒ vsAs − ps < vsArcr − pr ∵ (s, t) ∈ E(GM )

Violating the IC constraint.

Case II: ct < 1; oM(t) = ∅
Consider the mechanism

M ′ = TM,s,t

(
As + δ,At − δ,

Ascs
As + δ

,
Atct
At − δ

, ps, pt

)
then M ′ is feasible due to Lemma 1 and the fact that ct < 1. IC’s not involving s, t remain

unchanged. A′
tc

′
t = Atct and A′

sc
′
s = Ascs and so no other type has an incentive to pretend

to be s or t. Surplus of s has increased so it has no incentive to deviate in M ′ and since t

has outdegree zero, for small enough δ, t will not deviate. M ′, however, is an improvement

of δ(vs − vt) in the objective function.

Case III: ct = 1; At = As

From Lemma 6 we have that cs = 1. Since vsAs − ps = vsAt − pt we get ps = pt and so

s ∈ iM (t); t ∈ iM (s) and they must belong in a web. Since they are treated the same they

are pooled.

Case IV: ct = 1; At > As

We have,

pt − ps = vs(At −As)

=⇒ pt − ps > vt(At −As) ∵ vt < vs and As < At

=⇒ vtAs − ps > vtAt − pt

Consider M ′ = TM,s,t (At,As, ct, cs, pt, ps). s, t have no incentives to deviate in M ′ since

their surplus is not decreasing. No other type has any incentive to pretend to be s or t

either since they would otherwise have done that in M . M ′ improves the objective by

(vtAs − ps)− (vtAt − pt) > 0.

Lemma 7. In an optimal mechanism, the amount of money burning is strictly monotonic in
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the probability of allocation without an assessment, i.e., in an optimal M , Atct > Ascs ⇐⇒
pt > ps and Ascs = Atct ⇐⇒ ps = pt.

Proof. If either type has an in-degree 0 Lemma 3 that type has no verification, no money

burning and has minimal allocation probability. Wlog assume this is type s. By Lemma 5

Atct ≥ As. If Atct = As, then pt cannot be positive in an optimal mechanism as simply

lowering pt will yield an improvement. Now, let s′, t′ be such that (s′, s) ∈ E(GM ) and

(t′, t) ∈ E(GM ) then we have

vs′Ascs − ps ≥ vs′Atct − pt

vt′Atct − pt ≥ vt′Ascs − ps

Combining the two we get

vt′(Atct −Ascs) ≥ pt − ps ≥ vs′(Atct −Ascs)

Thus concluding the proof.

Proof of Proposition 3. The second part of the proposition is proved separately as a Lemma

8 below. Let t̂, t be such that vt > vt̂ and At < At̂ in an optimal mechanism M . If

deg−M (t̂) = 0 then the proposition is trivially true due to Lemma 3, so iM (t̂) ̸= ∅. The proof
consists of two parts. First, we show that for this mechanism M we must have ct < 1 and

pt̂ > 0.

Suppose ct = 1 or pt̂ = 0. If ct̂ = ct = 1 then from the IC constraints of t, t̂ we have

vt̂(At̂ −At) ≥ pt̂ − pt ≥ vt(At̂ −At)

which is not possible since At̂ > At and vt > vt̂, so:

ct̂ct < 1 (1)

If deg+M (t̂) = 0 and ct̂ < 1 then consider the mechanism M ′′ with

M ′ = TM,t̂,t

(
At̂ − δ,At + δ,

At̂ct̂
At̂ − δ

,
Atct
At + δ

, pt̂, pt

)
By Lemma 1, for small δ this is feasible. All IC constraints can be verified to be satisfied

for small δ and the objective function improvement is δ(vt−vt̂). And so if deg+M (t̂) = 0 =⇒
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ct̂ = 1. However, this implies that pt̂ > 0, since otherwise t̂ must have lowest allocation

probability and At̂ ≤ At contradicting the supposition. It also implies ct < 1 by (1). Thus,

we have ¬(ct < 1&pt̂ > 0) =⇒ deg+M (t̂) > 0.

Now, since deg+M (t̂) > 0 (i.e. oM (t̂) ̸= ∅), let t̂′ ∈ oM (t̂). We have:

vtAt − pt ≥ vtAt̂′ct̂′ − pt̂′

=⇒ pt̂′ − pt ≥ vt(At̂′ct̂′ −At)

=⇒ pt̂′ − pt > vt̂(At̂′ct̂′ −At) ∵ Lemma 5 : At̂′ct̂′ ≥ At̂ > At

=⇒ vt̂At − pt > vt̂At̂′ct̂′ − pt̂′

=⇒ vt̂At − pt > vt̂At̂ − pt̂ (2)

Consider M ′ = TM,t̂,t (At,At, ct, ct, pt, pt), which is IC by (2). Objective changes by

vt̂At − pt + kAtct − kAt − [vt̂At̂ − pt̂ + kAt̂ct̂ − kAt̂]

= (vt̂At − pt − vt̂At̂ + pt̂) + k(At̂ −At) + k(Atct −At̂ct̂)

Which is strictly positive if ct = 1 since the k terms will reduce to k(At̂ − At̂ct̂) and the

first term is positive by equation 2. It also strictly positive if Atct ≥ At̂ct̂. Thus ct < 1 and

At̂ct̂ > Atct implying pt̂ > pt ≥ 0 due to lemma 7.

Now given ct < 1 & pt̂ > 0, consider M∗ = TM,t̂,t(A∗
t̂
,A∗

t , c
∗
t̂
, c∗t , p

∗
t̂
, p∗t ) where,

A∗
t̂
= At̂ − ε; c∗

t̂
= ct̂ − ε

(
vt(At̂ct̂ −Atct)− ct̂(pt̂ − pt)

(pt̂ − pt)(At̂ − ε)

)
; p∗

t̂
= pt̂ − vtε

A∗
t = At + ε; c∗t = ct + ε

(
vt(At̂ct̂ −Atct)− ct(pt̂ − pt)

(pt̂ − pt)(At + ε)

)
; p∗t = pt + vtε

This part of the proof proceeds in 3 steps.

Step 1 - M∗ is feasible: Lemma 1 shows that A∗
t̂
and A∗

t are feasible for small ε. pt̂ > 0

and so pt̂, pt are feasible. c∗t is feasible for small enough ε, the previous part established

ct < 1. Also notice that ct̂ > 0 as otherwise no type would ever want to mimic it which

would in turn pt̂ = 0 in an optimal mechanism. Let us show 0 < c∗
t̂
≤ ct̂. The first inequality

holds for ε sufficiently small. For the second inequality we must show(
vt(At̂ct̂ −Atct)− ct̂(pt̂ − pt)

(pt̂ − pt)(At̂ − ε)

)
≥ 0 (3)

Consider t̂ = inf iM (t̂), then t > t̂ > t̂ due to Proposition 2. (Notice duplicate types cannot
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belong to the same web when c < 1 hence they do not point to each other) Thus:

vt̂At̂ct̂ − pt̂ ≥ vt̂Atct − pt

=⇒ vt̂(At̂ct̂ −Atct) ≥ pt̂ − pt

=⇒ vt(At̂ct̂ −Atct) ≥ pt̂ − pt ∵ At̂ct̂ > Atct

=⇒ vt(At̂ct̂ −Atct)− ct̂(pt̂ − pt) ≥ 0

Proving (3).

Step 2 - M∗ is IC: The only changes concern type t̂ and t. We have vt̂A∗
t̂
−p∗

t̂
≥ vt̂At̂−pt̂

and vtA∗
t − p∗t ≥ vtAt − pt and so t̂, t have no incentive to lie. Define

δ =
vtε

pt̂ − pt

Then we see

p∗
t̂
= (1− δ)pt̂ + δpt

p∗t = (1− δ)pt + δpt̂

A∗
t̂
c∗
t̂
= (1− δ)At̂ct̂ + δAtct

A∗
t c

∗
t = (1− δ)Atct + δAt̂ct̂

Consider any arbitrary type r:

vrA∗
t c

∗
t − p∗t = vr ((1− δ)Atct + δAt̂ct̂)− ((1− δ)pt + δpt̂)

= (1− δ) [vrAtct − pt] + δ [vrAt̂ct̂ − pt̂]

≤ vrAr − pr

And so r doesn’t mimic t. Similar argument shows that r doesn’t mimic t̂ either.

Step 3 - M∗ is an improvement:

Obj(M∗)−Obj(M) = vt̂A
∗
t̂
− p∗

t̂
+ kA∗

t̂
c∗
t̂
− kA∗

t̂
− (vt̂At̂ − pt̂ + kAt̂ct̂ − kAt̂)

+ vtA∗
t − p∗t + kA∗

t c
∗
t − kA∗

t − (vtAt − pt + kAtct − kAt)

= (vt − vt̂)ε− kδ(At̂ct̂ −Atct) + kε

+ kδ(At̂ct̂ −Atct)− kε

= (vt − vt̂)ε > 0
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Contradicting the optimality of M .

Lemma 8. vtAt − pt ≥ vt̂At̂ − pt̂ if vt ≥ vt̂.

Proof. Suppose not and let vt̂ < vt with vt̂At̂ − pt̂ > vtAt − pt then we must have ct̂ < 1

otherwise vtAt − pt < vtAt̂ − pt̂ violating the IC constraint. We must also have oM (t̂) = ∅
otherwise if r ∈ oM (t̂) , vtAt − pt < vt̂At̂ − pt̂ = vt̂Arcr − pr < vtArcr − pr violating the IC

constraint. Now, consider

M ′ = TM,t̂,t

(
At̂ − δ,At + δ,

At̂ct̂
At̂ − δ

,
Atct
At + δ

, pt̂, pt

)
M ′ is IC and is feasible due to Lemma 1 and the fact that ct̂ < 1. The improvement in the

objective is δ(vt − vt̂).

Lemma 9. In an optimal M , if W ′ is a directed cycle then all the types in W ′ must have

same probability of allocation, and the same amount of money burning with no chance of

assessment. Equivalently, W ′ ⊆ W for some web W .

Proof. Let W ′ = {t1, t2, . . . , tn} be the directed cycle then from Lemma 5 we have At1 ≤
At2ct2 ≤ At2 ≤ At3ct3 ≤ · · · ≤ At1ct1 thus giving us an equality throughout. From IC, we

have vt1At1 − pt1 = vt1At2ct2 − pt2 =⇒ pt1 − pt2 = 0, hence all the agents in the cycle must

have the same requirements. Since Ati = Atj ; pti = ptj ; cti = ctj = 1 ∀ti, tj ∈ W ′ we have

ti ∈ iM (tj) ∀ti, tj ∈ W ′ and W ′ must be part of a web.

Lemma 10. Every optimal GM is weakly connected and contains exactly one web W ∗ with

iM (W ∗) = ∅.

Proof. Let GM be optimal, we will first show that there must exist a web W in GM with

iM (W ) = ∅. If ∃t ∈ V such that iM (t) = ∅ then {t} is the desired web. So, deg−M (t) >

0 ∀t ∈ V , and GM must contain directed cycles. Due to Lemma 9 these cycles must belong

in a web thus GM must contain webs. Let W be the set of webs in GM .

Let W ∗ = argminW∈W {At : t ∈ W}, thus for any t∗ ∈ W ∗ and any t ∈ W ∈ W ,

W ̸= W ∗, At∗ < At.

It must be that iM (W ∗) = ∅, for otherwise let (t1, t
∗) ∈ E(GM ); t∗ ∈ W ∗; t1 ∈ V \W ∗

then At∗ ≥ At1 due to Lemma 5. Now, since deg−M (t1) > 0 we can find a t2 such that

At1 ≥ At2 and so on until we end up in another cycle withAtk ≤ At∗ which is a contradiction

to W ∗ = argminW∈W {At : t ∈ W}.

W ∗ is the only web with iM (W ∗) = ∅. Suppose not, let W be another such web.

deg−M (W ) = 0 =⇒ pt = 0 ∀t ∈ W , for if not then we can decrease money burning for all
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the types in the web by small δ > 0 and improve the objective function without violating

any IC constraints. Similarly, deg−M (W ∗) = 0 mean that there is no money burning in W ∗.

However, let t ∈ W, t∗ ∈ W ∗, since pt = pt∗ = 0 and At > At∗ , vt∗At∗ < vt∗At thus violating

the IC constraint and giving a contradiction.

If the graph is not connected, then repeating the steps above every connected component

must contain a web W with deg−M (W ∗) = 0. However, this gives us a contradiction since

there can only be one such web.

Proof of Proposition 4. Let M∗ be an optimal mechanism and consider the web W ∗ with

iM∗(W ∗) = ∅. Let t = maxW ∗ (this implies t is the highest index among copies if there are

multiple types with same valuation). Since iM∗(W ∗) = ∅ we must have pt = 0 ∀t ∈ W ∗,

otherwise the mechanism M ′ defined by decreasing money burning for all the projects in

W ∗ by small ε is an improvement over M∗ and is feasible and incentive compatible. Since

pt = 0; ct = 1 ∀t ∈ W ∗ we must have At = minr∈V Ar ∀t ∈ V for if not and let At̂ > At

then vt̂At̂ct̂ − pt̂ < vt̂At, thus violating the IC constraint. Due to Proposition 3 we must

have t ∈ W ∗ ∀t < t, since for all such t,At = At thus implying ct = 1; pt = 0 and

{(t, t), (t, t)} ⊆ E(GM ). Moreover, for any t > t we must have At > At. Thus by IC every

t > t must either have ct < 1, pt > 0 or both.

Lemma 11. Let t be the cutoff, let t̃ be such that pt̃ > 0. Then ∄t′ < t with vt′ < vt and

t′ ∈ iM (t̃).

Proof. Suppose not, ∃t′ < t with t′ ∈ iM (t̃). By lemma 4 we have At = At′ Since t′ ∈ iM (t̃)

and pt̃ > 0 we have:

pt̃ = (At̃ct̃ −At′) vt′

But since vt > vt′ .

pt̃ <
(
At̃ct̃ −At

)
vt

Contradicting the IC of type t.

Proof of Proposition 5. Suppose not, let t be such that pt > 0 in the optimal mechanism. By

lemma 11 any type in iM (t) must be weakly larger than t. Let t′ = min iM (t), and reduce

pt by ε and ct by ε
Atvt′

. This leads to iM (t′) = {t′} and the objective is also increased
1
nεAt(t

′ − k) > 0 delivering the desired contradiction. Since there is no money burning in

the mechanism the ct’s simply follow from Lemma 7.

34



Proof of Proposition 6. We are going to prove the proposition by induction.

Basis Step: Let t be the cutoff. If vt < k then pt+1 = vt(At+1 −At) and ct+1 = 1.

Proof of Basis Step. By definition p, cmust be optimal for the optimalA. LetA be given by

the optimal mechanism, then using Proposition 3 we can restrict attention to only upwards

constraints (recall duplicates are treated identically) and 11 ensures that only the cutoff

type can point outward from the bottom web. Finally we also know ct > 0 in any optimal

mechanism since ct = 0 would imply certain verification, which in turn means no type will

want to mimic that type, which can be improved by increasing ct slightly for that type.

Thus, the problem of choosing c and p is as follows:

max
⟨c⟩,⟨p⟩

n∑
t=t+1

[−pt + kAtct]

s.t.

ct ≤ 1 ∀t > t;

pt ≥ 0 ∀t > t;

vtAt̂ct̂ − pt̂ + pt ≤ vtAt ∀t, t̂ ∈ {t, . . . n}, t̂ > t

Consider the dual of this LP problem, letting yi,j ≥ 0 denote the coefficient of i pretending

to be j. Similarly let rj ≥ 0 denote the coefficient for the constraint cj ≤ 1. The coefficients

are all weakly positive since the constraints are all required to be less than equal to their

respective bounds. Since our constraint matrix is relatively simple we will directly interpret

the inequality constraints instead of introducing and keeping track of slack variables. This

also means that we do not need to introduce a separate coefficient for non-negativity of pt.

We remark that Vohra (2004) chapter 4 is an excellent and compact reference to keep track

of how weak primal constraints translate to dual constraints. The dual is:

min
⟨yi,j⟩,⟨r⟩

∑
i∈{t,...n}

∑
j>i

yi,jviAi +
∑

j∈{t+1,...,n}

rj

j∑
i=t

viAjyi,j + rj ≥ kAj , ∀j ∈ {t+ 1, . . . , n}

−
j∑

i=t

yi,j +

n∑
l=j+1

yj,l ≥ −1 ∀j ∈ {t+ 1, . . . , n}

Towards a contradiction, assume pt+1 = 0 that is the non-negativity constraint is binding.

By complementary slackness the constraint −yt,t+1+
∑n

l=t+2 yt+1,l ≥ −1 is slack (see Vohra

(2004), chapter 4, pp 64). But then we must have vtAt+1yt,t+1 = kAt+1 and rt+1 = 0 as
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otherwise we would have ct+1 = 1, which contradicts t being the cutoff. This in turn implies∑n
l=t+2 yt+1,l >

k
vt

− 1 > 0. Which further implies there is at least one l with yt+1,l > 0.

Since −yt,t+1 +
∑n

l=t+2 yt+1,l > −1 we can reduce yt+1,l by ε > 0 that is small enough and

increase yt,l by δ =
εvt+1

vt
. Then the dual decreases by εvt+1(At+1 −

At

vt
) > 0 contradicting

pt+1 = 0 minimizing the dual (equivalently maximizing the primal). Hence we must have

−yt,t+1 +
∑n

l=t+2 yt+1,l = −1, which by complementary slackness implies pt+1 > 0.

To see ct+1 = 1, for a contradiction assume 0 < ct+1 < 1 which implies rt+1 = 0. But

then we must have vtAt+1yt,t+1 = kAt+1 as otherwise complementary slackness would imply

ct+1 = 0, which in turn would imply that there can be no types that want to mimic t + 1

(since all claims are checked with certainty). But then increasing ct+1 by a small ε would

be a strict improvement of the objective so we must have vtAt+1yt,t+1 = kAt+1. Consider

decreasing yt,t+1 =
k
vt

> 1 by ϵ > 0 such that yt,t+1−ϵ > 1 and setting rt+1 = ϵvtAt+1. Then

the constraint regarding pt+1, −yt,t+1+
∑n

l=t+2 yt+1,l = −1 is now relaxed but the objective

in the dual is unchanged. Thus we can find at least one l with yt+1,l > 0 reduce yt+1,l

by ε and increase yt,l by δ =
εvt+1

vt
. Then the dual decreases by by εvt+1(At+1 −

At

vt
) > 0

contradicting the optimality of ct+1 < 1.

To see that pt+1 = vt(At+1 − At), observe that the constraint regarding t mimicking

t + 1 must bind as there has to be at least one type that wants to mimic t + 1, but since

ct+1 = 1 we must have pt+1 = vt(At+1 −At).

Inductive Step: Let t be the cutoff and let vt′ < k and t′ > t. By the inductive hypothesis

we have pt′−l − pt′−l−1 = vt′−l−1(At′−l − At′−l−1) and ct′−l = 1 for all t′ − t > l ≥ 0. We

need to show pt′+1 − pt′ = vt′(At′+1 −At′) and ct′+1 = 1.

Proof of Inductive Step. By the inductive hypothesis the money burning and verification

probabilities of all types including type t′ is known and fixed. Similar to the basis step we

can consider the LP that pins down the rest of the money burning and verification for the

optimal A. The problem is given by

max
⟨c⟩,⟨p⟩

n∑
t=t′+1

[−pt + kAtct]

s.t.

ct ≤ 1 ∀t > t′;

pt ≥ 0 ∀t > t;

vtAt̂ct̂ − pt̂ + pt ≤ vtAt ∀t̂ ∈ {t′, . . . n}, t ∈ {t, . . . n}, t̂ > t

The only difference between this LP and the one in the basis step is that we need to keep

36



track of the incentive constraints regarding types below t′ mimicking types above t′ as well,

since a choice of money burning and verification probability for some type t > t′ still needs

to satisfy those constraints. Similar to the basis step let us consider the dual letting yi,j ≥ 0

denote the coefficient of i pretending to be j. Similarly let rj ≥ 0 denote the coefficient for

the constraint cj ≤ 1. The dual is:

min
⟨yi,j⟩,⟨r⟩

∑
i∈{t,...n}

∑
j∈{t′+1,...,n},j>i

yi,jviAi +
∑

j∈{t′+1,,...n}

rj

j∑
i=t

viAjyi,j + rj ≥ kAj , ∀j ∈ {t′ + 1, . . . , n}

−
j∑

i=t

yi,j +
n∑

l=j+1

yj,l ≥ −1 ∀j ∈ {t′ + 1, . . . , n}

Towards a contradiction, assume pt′+1 = 0 that is the non-negativity constraint is bind-
ing. Similar to the basis step complementary slackness implies the constraint −

∑t′

i=t yi,t′+1

+
∑n

l=t′+2 yt′+1,l ≥ −1 is slack. But then we must have
∑t′

i=t viAt′+1yi,t′+1 = kAt′+1 and

rt′+1 = 0 as otherwise we would have ct′+1 = 1, which contradicts t′ being above the

cutoff. We can cancel the At′+1’s and reorganize the left handside term
∑t′

i=t viyi,t′+1 =∑t′

i=t vt′yi,t′+1 −
∑t′

i=t(vt′ − vi)yi,t′+1 = k. Since all (vt′ − vi)yi,t′+1’s are positive we thus

must have
∑t′

i=t yi,t′+1 > k
vt′

> 1. This in turn implies
∑n

l=t′+2 yt′+1,l > 0. Which further

implies there is at least one l with yt′+1,l > 0. Since −
∑t′

i=t yi,t′+1 +
∑n

l=t′+2 yt′+1,l > −1

we can reduce yt′+1,l by ε > 0 that is small enough and increase yt,l by δ =
εvt′+1

vt′
. Then

the dual decreases by εvt′+1(At′+1 −
At′
vt′

) > 0 contradicting pt′+1 = 0 minimizing the dual

(equivalently maximizing the primal). Hence we must have pt′+1 > 0.

To see ct′+1 = 1, for a contradiction assume 0 < ct′+1 < 1 which implies rt′+1 = 0.

But then we must have
∑t′

i=t viAt′+1yi,t′+1 = kAt′+1 as otherwise complementary slackness

would imply ct′+1 = 0 which cannot be optimal similar to the basis case. Consider decreasing

yt,t′+1 by ϵ > 0 such that
∑t′

i=t yi,t′+1 − ϵ > 1 and setting rt′+1 = ϵvtAt′+1. Then similar to

the basis step the constraint regarding pt′+1, is now relaxed but the objective in the dual is

unchanged. Thus similar to above we can find at least one l with yt′+1,l > 0 reduce yt′+1,l

by ε > 0 that is small enough and increase yt,l by δ =
εvt′+1

vt′
. Then the dual decreases by

εvt′+1(At′+1 −
At′
vt′

) > 0 contradicting the optimality of ct′+1 < 1.

Finally, to see that pt′+1 = vt′(At′+1−At′)+pt′ observe that again there has to be at least

one type that wants to mimic t′+1. For a contradiction suppose some type l, t ≤ l < t′ has a

binding incentive constraint regarding t′+1. Then we must have pt′+1 = vl(At′+1−Al)+pl

and pl is fixed by the inductive hypothesis. Let us now consider the type l + 1. By the
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inductive hypothesis we also must have pl+1 = vl(Al+1 − Al) + pl. But then, incentive

constraint for type l + 1 regarding t′ + 1 would imply

vl+1Al+1 − pl+1 ≥ vl+1At′+1 − pt+1,

vl+1Al+1 − pl+1 ≥ vl+1At′+1 − vl(At′+1 −A)− pl,

vl(At′+1 −Al) ≥ vl+1(At′+1 −Al+1) + pl+1 − pl,

vl(At′+1 −Al) ≥ vl+1(At′+1 −Al+1) + vl(Al+1 −Al),

vl(At′+1 −Al+1) ≥ vl+1(At′+1 −Al+1);

Now, if vl < vl+1 then we reach the desired contradiction as the IC of type vl+1 will be

violated. If not, then we must have vl = vl+1, and vl+1 also has a binding constraint

pt′+1 = vl+1(At′+1 −Al+1) + pl+1. If l+ 1 = t′ then we are done. If not we consider the IC

for type l + 2. Again, either we would have a violation of IC for type l + 2 if vl+1 < vl+2

or we must have vl+2 = vl+1 = vl with l + 2 having a binding constraint. Proceeding

inductively we either will reach a contradiction or all types starting from l has the same

value until t′ and the IC of t′ gives the desired identity pt′+1 = vt′(At′+1 − At′) + pt′ .

Notice, in the case that all types have the same value, that is vl = vl+1 . . . vt′ then we have

{(l, t′ + 1), (l + 1, t′ + 1), . . . (t′, t′ + 1)} ⊂ E(GM ).

Lemma 12. Let t be the cutoff and let tEF > t. Then for all t such hat vt > k, ct < 1.

Proof. Let A’s be fixed for a given cutoff t. And by proposition 6 we know that for all

t̂ ≤ tEF , ct̂ = 1 and pt̂ = vt̂−1(At̂ −At̂−1) + pt̂−1 starting with pt = 0. Then the principal’s

problem can be written as a standard LP

max
⟨c⟩,⟨p⟩

n∑
t=tk+1

[−pt + kAtct]

s.t.

ct ≤ 1 ∀t ∈ {tEF + 1, . . . , n}; ct, pt ∈ R+

vt̂At̂ ≥ vt̂Atct − pt + pt̂ ∀t ∈ {tEF + 1, . . . , n}, t̂ ∈ {t, . . . , n}, t̂ < t

Notice in this formulation we still need to account for lower types (whose c and p is fixed)

potentially mimicking higher types. The lemma concerns ct’s so instead of directly using

Simplex method, we apply the upper bounding technique detailed in Eiselt and Sandblom

(2007) (pp 212-218). That is we first seperate the upper bounds on ct, and consider the

constraint matrix, defined by just the IC constraints. The constraint matrix including the

slack variables for the IC constraints has the following representation
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VtEF+1 0 · · · 0 0 −1tEF+1−t+1 0 · · · 0 0

0 VtEF+2 · · · 0 0 e
t′+2−t+1
1 −1tEF+2−t+1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · Vn−1 0 e

n−1−t+1
1 e

n−1−t+1
2 · · · −1n−1−t+1 0

0 0 · · · 0 Vn e
n−t+1
1 e

n−t+1
2 · · · e

n−t+1
n−t+1 −1n−t+1

I



Vj is the column vector of size j − t+1 with entries (vtAj , vt+1Aj , . . . , vj−1Aj). −1j is

the column vector of size j with all entries −1 and ejl is the unit column vector of size j, that

is, it has zero in every entry except the lth entry which has a value 1. Finally I denotes the

identity matrix of size
∑n

r=t′+1(r−t+1). In words each column vector Vj corresponds to all

the types that might potentially want to mimic type j, which are all the types starting from

t and ending in j−1. Any type that wants to mimic type j would need to pay pj hence there

are j−t+1 constraints which has pj with coefficient −1. If type j > t′ wants to mimic other,

higher types, then we account for those with the entries e since pj is still a choice variable.

For types less than or equal to t′ the p’s are fixed by proposition 6. For each j we construct

the following column vector νj = (vtAt, . . . vtEFAtEF − ptEF , vtEF+1AtEF+1, . . . , vj−1Aj−1).

And the column vector of size
∑n

r=tEF+1(r− t+1), ν = (νtEF+1, . . . , νn) which corresponds

to the RHS of all the IC’s.

Given that the p’s have a negative value in the objective, we need to start pivoting from

any of the c variables first. Suppose we start from the variable cj , since all the entries

in the column (0, . . . , 0,Vj , 0, . . . , 0) is weakly positive and all the entries in the vector ν

are positive upper bounding yields vtAj as the pivot variable. On the other hand if we

applied standard simplex for our constraint matrix will have n− t+ 1 additional rows and

columns, rows corresponding to the upper bound constraints for c variables, and columns

corresponding to their associated slack variables. In particular since the objective hasn’t

changed we would start pivoting from any of the c variables first again. Suppose we start

from the column corresponding to the variable cj , the associated column is now longer by

n− t+1 entries where all the new entries are 0 except one 1 corresponding to the equation

cj+scj = 1 where scj is the slack variable introduced to capture the constraint cj ≤ 1. That

is the column will now be (0 . . . 0, 1, 0 . . . 0; 0, . . . , 0,Vj , 0, . . . , 0). However, similar to before

the pivot variable would be vtAj since the quotient for the new constraint is just 1 and we

have At/Aj < 1. But since both algorithms pivot the same way with the same quotient

for the departing variable cj , the constraint cj ≤ 1 cannot be binding. Proceeding with the

rest of the c variables in an analogous manner, we conclude for all t > tEF , ct < 1.

Proof of Proposition 7. Suppose A’s are all given and fixed for a given cutoff v. And by

proposition 6 we know that for all t̂ ≤ tEF , ct̂ = 1 and pt̂ = vt̂−1(At̂ −At̂−1) + pt̂−1 starting

with pt = 0. Finally by Lemma 12 we know that for all t > tEF , ct < 1.
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We first show ptEF+1 = ptEF . For a contradiction, suppose not. There are two cases to

consider

Case I: ptEF+1 < ptEF

Recall that Atct = At for all t ≤ tEF by Lemma 5. Proposition 2 implies that the only

types that can have a binding constraint regarding type tEF + 1 are the types t̂ such that

pt̂ ≤ ptEF+1. First, suppose that multiple such types with binding constraints exist and let

t̃ be the minimal type. From the IC of type t̃ we have

vt̃(AtEF+1ctEF+1 −At̃) = ptEF+1 − pt̃

On the other hand by Proposition 6 we also have

vt̃At̃ − pt̃ = vt̃At̃+1 − pt̃+1

which together imply that

vt̃+1(AtEF+1ctEF+1 −At̃) > ptEF+1 − pt̃

A violation of the IC constraint for type t̃ + 1. A similar violation also occurs if there is

a single type t̃ but pt̃+1 ≤ ptEF+1. Thus, the only plausible case is if the only type that is

mimicking type tEF + 1 is type tEF − 1 so that we have ptEF−1 ≤ ptEF+1 < ptEF . But then

consider increasing ptEF+1 by δ and ctEF+1 by ϵ where AtEF+1ϵvtEF−1 = δ. Such an increase

means tEF − 1 is still indifferent whereas all the other constraints remain unaffected, but

the increase in the objective is ϵAtEF+1(k − vtEF−1) > 0, a contradiction.

Case II: ptEF+1 > ptEF

In this case first suppose some type t̃ < tEF has a binding constraint with type tEF +1.

Then similar to above we would have

vt̃(AtEF+1ctEF+1 −At̃) = ptEF+1 − pt̃ and; vt̃At̃ − pt̃ = vt̃At̃+1 − pt̃+1

which together imply that

vt̃+1(AtEF+1ctEF+1 −At̃) > ptEF+1 − pt̃

A violation of the IC constraint for type t̃ + 1. Therefore the only types that can mimic

type tEF + 1 are types above tEF . But then consider decreasing ptEF+1 by δ and ctEF+1

by ϵ where AtEF+1ϵvtEF = δ. Then any IC pertaining to type tEF + 1 from any type

weakly above tEF will continue to hold, potentially strictly. The increase in the objective
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is ϵAtEF+1(vtEF − k) > 0, a contradiction.

Proceeding inductively with identical cases we must have ptEF+2 = ptEF , which in turn

implies ptEF+3 = ptEF and so on until we have pn = pn−1 . . . = ptEF . Since the payments

are the same by Lemma 7 we have

Ancn = An−1cn−1 = . . . = AtEF+1ctEF+1 = AtEF .

Proof of Proposition 8. If vt > k, then Proposition 5 implies there is no money burning

at all in the mechanism and the result is the one that coincides with Vohra (2012) which

satisfies the proposition. Consider the case where vt < k. As described in the main text

the polymatroid problem is:

max
⟨B⟩

n∑
t=1

vt(Bt + dt)

s.t.
∑
s∈S

Bs ≤ ρ(S) ∀S ⊂ V

Since g is submodular and d′is are increasing, the ρ function for any set {n, n−1, n−2, . . . t}
with t ≥ t + 1 must be of the form ρ({n, n − 1, . . . , t}) = g(n − r + 1) −

∑n
i=r di for some

t ≥ r ≥ t. We also know that if i, j are duplicates types then we must have di = dj . The

only way to “skip” some terms is by skipping a duplicate type and replacing it with another.

However, recall that g is submodular. Since every duplicate has the same di a minimizing

superset must contain all duplicates together. It is not possible to consider subsets that

“skip” non-duplicate terms t and r as the term
∑n

i=t dt is maximized by choosing consecutive

elements due to weakly increasing di’s. If ρ({n, n−1, . . . , t}) = g(n− t+1)−
∑n

i=t di for all

sets of the form {n, n− 1, n− 2, . . . t} then the greedy algorithm proceeds downward from

the highest value V. That is Bn = Bn−1 = Bn−f(V) =
g(f(V))
f(V) −f(V)dn which results in An =

. . . = An−f(V) =
g(f(V))
f(V) . Proceeding inductively from the top we get thatAn−f(V)−1 = . . . =

An−f(V)−f(V−1) =
g(f(V)+f(V−1))−g(f(V))

f(V−1) and so on resulting in the claim of the proposition

with types below cutoff sharing the leftover allocation.

Towards a contradiction, suppose there exists some t̃ (WLOG assume t̃ is the lowest

index among the duplicates) such that the set ρ({n, n−1, . . . , t̃}) = g(n−r+1)−
∑n

i=r di <

g(n − t̃ + 1) −
∑n

i=t̃ di for some t̃ > r ≥ t. Then the greedy algorithm necessarily assigns

Bt̃ = g(n − r + 1) − g(n − t̃ + 1) −
∑t̃

j=r dj > dt̃, and sets Bt′ = 0 for any t′ such that

t̃ > t′ ≥ r, hence those types are at their constraint level. The first inequality is strict

since ρ({n, n − 1, . . . , t̃}) = g(n − r + 1) −
∑n

i=r di < g(n − t̃ + 1) −
∑n

i=t̃ di. But Bt̃ > dt̃
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implies that type t̃ does not want to mimic any type, their allocated payoff is strictly larger

than even the best type of lie they can tell. This in turn means that t̃ cannot be subject

to only money burning since Proposition 6 implies that these types have a type that they

do want to mimic. Thus we must have oM (t̃) = ∅, and ct̃ < 1. Furthermore, the resulting

At̃ = Bt̃ + dt̃ = g(n − r + 1) − g(n − t̃ + 1) −
∑t̃−1

i=r di < g(n − t̃) − g(n − t̃ + 1), that is

the constraints arising from the lower types necessitates some withholding of type t̃. Let’s

construct an improvement. By proposition 6 in Ac, p we must have pt+1 > 0 and ct+1 = 1

so t̃ > t+ 1. Consider M∗ = TM,t+1,t(A∗
t+1,A∗

t̃
, c∗t+1, c

∗
t̃
, p∗t+1, p

∗
t̃
) where,

A∗
t+1 = At+1 − ε; c∗t+1 = ct − ε

(
vt̃(At̃ct̃ −At+1ct+1)− ct+1(pt̃ − pt+1)

(pt̃ − pt+1)(At+1 − ε)

)
;

p∗t+1 = pt+1 − vt̃ε

A∗
t̃
= At̃ + ε; c∗

t̃
= ct̃ + ε

(
vt̃(At̃ct̃ −At+1ct+1)− ct(pt − pt+1)

(pt − pt+1)(At + ε)

)
;

p∗t = pt̃ + vt̃ε

Improving At̃ this way is feasible since At̃ < g(N− t̃)−
∑n

j=t̃+1Aj so there is slack for small

enough ε. Thus, noting ct̃ < 1 and replicating the steps 1-2-3 of the proof of proposition 3

shows that M∗ is feasible, IC and an improvement.

Proof of Theorem 1. The proof of theorem simply follows from the proof of the two Lem-

mas about the discrete derivative with regards to optimal cutoffs with and without money

burning, which we will prove below. Let Π(v) denote the total payoff from the mechanism

when the cutoff type has value v and the associated type is t. Let us introduce the nota-

tion Āt to denote the allocation probability of the type t when t is the cutoff (analogously

Āv for any type below cutoff) and we use At to denote the allocation probability of type

t when the cutoff is below t (analogously Av for any valuation above the cutoff). Recall

h(v) = f(v)∑V
i=v+1 f(i)

is the hazard rate.

Proof of Lemma A. Let us consider a change of the cutoff from v to v+1. The only change

to the types above v+2 is their money burning requirements since they were already getting

the greedy allocations and verification probabilities don’t change. For the types below and

including v + 1 the allocation probabilities change, and type v + 1 is no longer required to

burn money. The change in money burning for v + 2 and all the types above is given by:

∆pv+2 = (v + 1)(Av+1 − Āv+1)− v(Av+1 − Āv)

The money burning that vanishes from v + 1 is pv+1 = v(Av+1 − Āv).Therefore the total
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change in money burning is equal to

(Av+1 − Āv)v
V∑

i=v+1

f(i)− (Av+1 − Āv+1)(v + 1)
V∑

i=v+2

f(i)

The change in allocation can be calculated again using the discrete product rule to

reduce to (
v∑

i=1

if(i)(Āv+1 − Āv)

)
− (Av+1 − Āv+1)(v + 1)f(v + 1)

Therefore the total change in payoff F (v + 1)− F (v) is given by

Π(v + 1)−Π(v) =

(
v∑

i=1

if(i)(Āv+1 − Āv)

)
− (Av+1 − Āv+1)(v + 1)f(v + 1)

+ (Av+1 − Āv)v

V∑
i=v+1

f(i)

− (Av+1 − Āv+1)(v + 1)

V∑
i=v+2

f(i)

We are only interested in the sign of this derivative thus we can divide the entire equation

by (Āv+1 − Āv) and simplify to get

Π(v + 1)−Π(v) ∝
v∑

i=1

if(i)−
∑v

i=1 f(i)

f(v + 1)
(v + 1)f(v + 1)

+ v

∑v+1
i=1 f(i)

f(v + 1)

V∑
i=v+1

f(i)

− (v + 1)
V∑

i=v+2

f(i)

∑v
i=1 f(i)

f(v + 1)

Reorganizing the terms above we get

Π(v + 1)−Π(v) ∝
v∑

i=1

f(i)

(
i− (v + 1)

∑V
i=v+1 f(i)

f(v + 1)
+ v

∑V
i=v+1 f(i)

f(v + 1)

)
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Simplifying further and recalling that
∑V

i=v+1 f(i)

f(v+1) is the inverse hazard rate we have

Π(v + 1)−Π(v) ∝
v∑

i=1

f(i)(i− 1

h(v + 1)
)

Recall that under monotone hazard rate assumption the inverse hazard rate 1
h(v+1) is non-

increasing. Thus the derivative is increasing. This in turn implies that if it is ever worth

it to increase the cutoff with money burning, then it is also worth it to increase it all the

way till k − 1. Therefore we now consider the case of increasing the cutoff from k − 1 to k,

which would actually remove money burning from the mechanism altogether. If the cutoff

is k the payoff is

Π(k) = Āk

k∑
i=1

if(i) +

V∑
i=k+1

(i− k)Aif(i) + kĀk

V∑
i=k+1

f(i)

If the cutoff is k − 1 the payments will be equal to (k − 1)
∑V

i=k f(i)(Ak − Āk−1). Type k

is still not subject to verification, but the verification probability of all the types above it

changes. Thus the total payoff is

Π(k − 1) = Āk−1

k−1∑
i=1

if(i) +

V∑
i=k+1

(i− k)Aif(i) + kAk

V∑
i=k+1

f(i)

−(k − 1)
V∑

i=k

f(i)(Ak − Āk−1) +Akkf(k)

The difference is thus

Π(k)−Π(k − 1) = (Āk − Āk−1)

k−1∑
i=1

if(i) + (Āk −Ak)kf(k)

+k(Āk −Ak)

V∑
i=k+1

f(i) + (k − 1)(Ak − Āk−1)

V∑
i=k

f(i)

Dividing everything by (Āk − Āk−1) and after a bit of algebra we get

Π(k)−Π(k − 1) ∝
k−1∑
i=1

f(i)(i−
∑V

i=k f(i)

f(k)
)

k−1∑
i=1

f(i)(i− 1

h(k)
)
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Thus the discrete derivative is in a sense continuous from the left and increases up to k as

we had seen above. Dividing the equation by n yields the probabilites and dividing further

by
∑v

i=1 f(i)/n = P (v ≤ v) gives the conditioning probabilities present in the statement

of the lemma. A direct implication is that if money burning is present in the mechanism,

then the cutoff has to be 1, thus there is perfect allocative efficiency.

Proof of Lemma B. In this case there is no money burning in the mechanism

Π(v) = Āt

t∑
t=1

vt +

n∑
t=t+1

At(vt − k) +

n∑
t=t+1

Atctk

= Āt

t∑
t=1

vt +

n∑
t+1

At(vt − k) + Āt

n∑
t=t+1

k

= Āv
v∑

i=1

if(i) +

V∑
i=v+1

(i− k)Aif(i) + kĀv
V∑

i=v+1

f(i)

= Āv

 v∑
i=1

if(i) + k
V∑

i=v+1

f(i)

+
V∑

i=v+1

(i− k)Aif(i)

Now let us try calculate F (v + 1) − F (v). Using the discrete product rule on the first

term after a little algebra we get

Π(v + 1)−Π(v)

= (Āv+1 − Āv)

v+1∑
i=1

if(i) + k
V∑

i=v+2

f(i)

− (Av+1 − Āv)f(v + 1)(v + 1− k)

Since we are only interested in the sign of the discrete derivative we can divide the equation

by (Āv+1
t − Āt) to get

Π(v + 1)−Π(v) ∝

v+1∑
i=1

if(i) + k
V∑

v+2

f(i)

−
v+1∑
i=1

f(i)(v + 1− k)

∝
v+1∑
i=1

(i− (v + 1))f(i) + k

V∑
i=1

f(i)

Notice the last summand in the first term is 0 by definition. Dividing everything n we

recover the terms f(i)/n which correspond to the probability of value i. Dividing and
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multiplying the first term by
∑v

i=1 f(i)/n = P (v ≤ v) we recover
∑v

i=1 if(i)/n∑v
i=1 f(i)/n

= E(v|v ≤ v).

We recover the more familiar terms

Π(v + 1)−Π(v) ∝ P (v ≤ v)E(v − v + 1|v ≤ v) + k

Proof of Proposition 9. Notice that a change in k also changes tEF , so with a slight abuse

of notation we will define the function tEF (k), where tEF (k) = min{t ∈ {1, . . . , n} : vt ≥ k}.
In order to prove the proposition let us introduce the function Π(t, k, k′) capturing the value

of the problem when the cutoff is v, cost of verification k, the endogenous cutoff is given by

tEF (k′) and allocation probabilities are given by Proposition 8. Formally:

Π(t, k, k′) = It≥tEF (k′)

 n∑
t=1

Atvt −
n∑

l=t+1

k
(
Al −At

)
+ It<tEF (k′)

tEF (k′)∑
t=1

(n− t+ 1)At(vt − vt−1) + V KEF (k, k′)


Where V KEF (k, k′) =

∑n
t=tEF (k′)+1(Atvt−AtEF (k′)vtEF (k′))−

∑n
t=tEF (k′)+1 k(At−AtEF (k′)).

Our goal is to show that when parametrized by k, the function F (·, k, k) dominates F (·, k′, k′)
for k > k′ in the interval order (see Quah and Strulovici (2009)). For a contradiction sup-

pose that this is not true, then there must exist a pair t′′ > t′ and for all t ∈ {t′, . . . , t′′} we

have Π(t′′, k′, k′) ≥ Π(t, k′, k′) but Π(t′′, k, k) < Π(t′, k, k). There are four cases we need to

consider.

Case I: t′′ > t′ ≥ tEF (k)

In this case we necessarily also have t′′, t′ > tEF (k′) and there is no money burning in

both mechanisms either with k or k′. But then Π(t′′, k′, k′) ≥ Π(t′, k′, k′) implies that

t′′∑
t=1

At′′vt −
t′∑

t=1

At′vt −
t′′∑

t′+1

Atvt ≥ k′

 n∑
l=t′′+1

(Al −At′′)−
n∑

l=t′+1

(Al −At′)


Notice that the term in parenthesis is negative as both At′′ > At′ and the first summation

is over fewer terms. But then the inequality continues to hold when we replace k′ with k

thus implying Π(t′′, k, k) ≥ Π(t′, k, k) delivering a contradiction.
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Case II: tEF (k′) > t′′ > t′

In this case we necessarily have money burning in both mechanisms with k or k′. In

particular, costs associated with k only corresponds to V KEF (·, ·) in both mechanisms

and hence cancel each other out. So we have Π(t′′, k′, k′) ≥ Π(t′, k′, k′) directly implying

Π(t′′, k, k) ≥ Π(t′, k, k) delivering the desired contradiction.

Case III: t′′ ≥ tEF (k) > t′ > tEF (k′)

By definition we have F (t′′, k′, k′) = Π(t′′, k′, k) = Π(t′′, k, k) + (k− k′)
∑n

t′′+1At −At′′ .

On the other hand we have

Π(t′, k′, k′) ≥ Π(t′, k′, k) = Π(t′, k, k) + (k − k′)(
n∑

t=tEF (k)+1

At −AtEF (k))

But we already know Π(t′′, k′, k′) ≥ Π(t′, k′, k′) and hence we have

Π(t′′, k, k) + (k − k′)

n∑
t′′+1

At −At′′ ≥ Π(t′, k, k) + (k − k′)(

n∑
t=tEF (k′)+1

At −AtEF (k′))

But, clearly we have (k−k′)
∑n

t′′+1At−At′′ ≤ (k−k′)(
∑n

t=tEF (k′)+1At−AtEF (k′)) implying

Π(t′′, k, k) > Π(t′, k, k), the desired contradiction.

Case IV: tEF (k) > t′′ ≥ tEF (k′) > t′

By definition we have Π(t′′, k′, k′) = Π(t′′, k, k′)+ (k− k′)
∑n

t′′+1At −At′′ . Furthermore

by optimality we have Π(t′′, k, k′) ≤ Π(t′′, k, k) thus we have Π(t′′, k′, k′) ≤ F (t′′, k, k)+(k−
k′)
∑n

t′′+1At −At′′ On the other hand we have

Π(t′, k′, k′) ≥ Π(t′, k′, k) = Π(t′, k, k) + (k − k′)(

n∑
t=tEF (k)+1

At −AtEF (k))

But we already know Π(t′′, k′, k′) ≥ Π(t′, k′, k′) and hence we have

Π(t′′, k, k) + (k − k′)

n∑
t′′+1

At −At′′ ≥ Π(t′, k, k) + (k − k′)(

n∑
t=tEF (k)+1

At −AtEF (k))

But, clearly we have (k−k′)
∑n

t′′+1At−At′′ ≤ (k−k′)(
∑n

t=tEF (k′)+1At−AtEF (k′)) implying

Π(t′′, k, k) > Π(t′, k, k), the desired contradiction.

Since all cases lead to a contradiction we must have that Π(·, k, k) dominates Π(·, k′, k′)
for k > k′ in the interval order. Hence by Theorem 1 of Quah and Strulovici (2009), we

have that the optimal cutoff is weakly increasing in k. Now, with a slight abuse of notation
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let t(k) denote the cutoff level for cost k. By the above argument we know that t(k) is

weakly increasing. Recall that tEF (k) is also increasing. Then the types that are subject

to verification are all the types t > max{t(k), tEF (k)}. Thus as k increases, the set of

types that are subject to verification weakly decreases. Furthermore and their verification

probabilities are given by ct =
max{A

tEF (k)
,At(k)}

At
. Hence the probability of verification 1− ct

for all the types that are subject to verification is also increasing in k.
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