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Abstract
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“The good fighters of old first put themselves beyond the pos-
sibility of defeat, and then waited for an opportunity of defeating
the enemy.” Sun Tzu, Art of War.

1 Introduction

Some books are so valuable that generations have struggled for its preserva-
tion and understanding. The canonical example is Sun Tzu’s military treatise
Art of War Tzu (1961, original traditionally dated circa 500 BC). Seemingly
impervious to time, Art of War is perhaps the most famous study of strat-
egy ever written. It inspires people today on matters of business, personal
conduct and even romance, as it once guided kings, generals and strategists
millennia ago on armed conflict.

There are two main keys to the success of Art of War (in the last 15 years,
more than 20 popular books apply the principles of Art of War to business
practice, romance, self-improvement, and several other matters).1 First, it
works out the basic principles of strategic fighting (e.g., when to be aggressive
or defensive depending on circumstances). These principles proved to be
practical and revolutionary. They made clear that conflict is a more subtle
and complex matter than the traditional concept of war of attrition where
one side simply uses greater material resources to wear out and overpower
the other side. The second main key is the subject itself: Conflict is common
in ordinary life and confrontations, no matter how disguised, have always
occurred (e.g., divorce, commercial litigation, professional disputes). Hence,
there is a perennial interest in the idea of strategic fighting.

The ideas in Art of War, while still relevant in modern times, have not
been examined by formal models. We revisit parts of ancient eastern liter-
ature under modern mathematical lenses. Our focus is on a central theme
in Art of War: the idea that a confrontation is a serious affair which must
not be initiated on impulse and without careful planning. If started, it must
be for strategic reasons. Thus, a basic question in Art of War is when to
engage in a confrontation: “One who knows when he can fight and when he
cannot fight, will be victorious.” To properly address this question, we must
consider a setting where the timing of the confrontation is critical for the

1 Wee (1991) notes that Art of War is a required reading in Japanese business schools.
For applications of Art of War in various aspects modern life see also McNeilly and Mc-
Neilly (2011), Sheetz-Runkle (2014), Smith (2008), Rogell (2010), Bell (2009).
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resolution of the conflict and is taken strategically.
We examine a decision-theoretic, infinite horizon model where, at every

period, each side decides whether to engage the other side in a confrontation.
If anyone attacks, the process ends with one side as the victor. Otherwise,
they both live to face each other the next day. The odds of victory changes
every period and are known to both sides before deciding whether to strike.

Sun Tzu recommends a defensive position while waiting for an opportune
moment to attack: “The good fighters of old first put themselves beyond
the possibility of defeat, and then waited for an opportunity of defeating the
enemy.” This tenet, combined with many examples of catastrophic outcomes
produced by hasty engagements, suggest that a more patient individual could
wait longer for a proper opportunity to strike. So, there should be a negative
relation between patience and aggressiveness (i.e., the propensity to fight
sooner rather than later). This may seem commonsensical. An appeal to
patience is normally understood as an appeal to serenity and seldom, if ever,
to aggressive action. But here, as in many of Sun Tzu’s aphorisms, a point
is concealed. Forgoing an opportunity to attack does indeed give an option
value of a better opportunity to attack, but it can also be fatal because it also
gives the enemy the option value of a better opportunity to attack. Thus, in
conflicts, the results of patience are unclear.

Our results are as follows: If the probability of victory is always high
(i.e., above a threshold), then a more patient individual requires higher odds
of success to attack and so, as Sun Tzu points out, waits longer to start a
conflict. This holds under Sun Tzu’s requirement of a position where defeat
is never likely. If this proviso does not hold and likelihood of victory is always
low then the relationship between patience and aggressiveness (i.e., the ten-
dency to attack sooner) is reversed. A more patient individual requires lower
odds of success to attack. Under vulnerable conditions, patient individuals
may preempt the opponent with early strikes.

In the case that no side has, ex-ante, an upper hand in the conflict then
the relationship between patience and aggressiveness depends on the strategy
of the opponent. If the opponent is not aggressive (i.e., attacks only when the
odds of victory are above a high threshold) then a more patient individual is
less aggressive. Conversely, if the opponent is aggressive then a more patient
individual is more aggressive. Aggressiveness is best responded with aggres-
siveness. If the opponent is sufficiently aggressive then a patient individual
attacks even if the current expected payoff of confronting the opponent is
negative.
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These results formalize a new way to validate Sun Tzu’s maxims. A
far-sighted commander must forgo an opportunity to attack that a myopic
commander would take, and wait for a better opportunity to strike. However,
this is only so under Sun Tzu’s proviso of a strong defensive position. Under
vulnerable conditions, the relationship between patience and aggressiveness
is reversed. A far-sighted individual may engage in attacks that a myopic
individual would not take. This follows because patient individuals fear giv-
ing the enemy the opportunity to strike and so, undergo a preemptive strike.
Attacks are triggered even if the current expected payoffs of a confrontation
are smaller than those of peace.

The organization of the paper is as follows: Section 2 introduces the
conflict formally. Results are in section 3. Section 4 discusses possible future
work. Section 5 concludes. Proofs are in the appendix.

1.1 Relation with the Existing Literature

While a mathematical analysis of ancient Chinese literature may be new, re-
search on the inefficiency of conflict is not. It has been widely studied in the
political economy literature. Garfinkel and Skaperdas (2007) is an excellent
survey on conflict, but see also Fearon (1995), Powell (1999), Powell (2004),
Powell (2006). However, the connection between this literature and this
paper is rather tenuous. The motivating questions differ. The political econ-
omy literature focuses on the understanding of the existence of inefficient
wars and how institutions affect them. We, instead, focus on the fighting
strategies themselves (e.g., when to fight) and the relation between patience
and aggressiveness. In addition, most of political economy literature uses
statics model whereas we consider a dynamic model. There are a few excep-
tions to the later point though. For example, Powell (1993) and Acemoglu
and Robinson (2001) consider dynamic elements in a model fundamentally
different from ours.

Our bilateral setting that eventually divides a constant sum can be related
to bargaining models. This is a very large literature that we do not survey
here. Serrano (2007) provides an excellent survey. Osborne and Rubinstein
(1990) and Roth (1985) also provide a detailed analyses. In the work of Abreu
and Gul (2000), Compte and Jehiel (2002) players decide when to take action
(concede). The war of attrition structure that arises from bargaining models
is orthogonal to our model.

There exists a vast literature interested in mathematical modelling of
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military matters, but the examined questions we know of are unrelated to
the ones in this paper. A notable pioneering work is Schelling (1980) which
developed many insights for rational modelling of armed conflict. O’Neill
(1994) provides an extensive survey on the literature.

Our game of warfare is modelled as a stopping game. Technically, stop-
ping games (see Dynkin (1969), Neveu (1975), Yasuda (1985), Rosenberg,
Solan, and Vieille (2001), Szajowski (1993), Shmaya and Solan (2004), Ek-
strom and Villeneuve (2006), Ohtsubo (1987)) are reducible (when players’
actions may change the game permanently) stochastic games. In many re-
ducible games, it is difficult to obtain much more than existence of equilibria.
Here we rely on the techniques in Quah and Strulovici (2013) to obtain com-
parative statics results about best responses.

2 Basic Model and Notation

There are two sides 1 and 2. At each period either side either starts a fight
or not. If neither side engages in a fight, they get 0 payoffs that period
and the game continues into the next period. If one side decides to start a
fight, the opponent cannot avoid the dispute and the game ends with one
side defeated. The winner gets utility of v > 0, and the loser utility of −l,
l > v > 0. So, confrontations are destructive: the payoff of victory (v) is
less than the disutility of defeat (l).2 In case of a confrontation at period t,
side 1 is the victor with probability pt. At the beginning of each period, both
sides observe 1’s probability of winning (hence 2’s probability of winning).
Thus, the choice to start a confrontation occurs after observing the odds of
victory. The probability pt of side 1 winning the confrontation is produced
by an independently and identically distributed process with a continuous
probability density. The distribution of pt is commonly known. We focus on
a decision theoretic analysis of the best responses of side 1, against different
fixed behaviors of side 2. Side 1 discounts future payoffs with a discount
factor β ∈ (0, 1).

The conflict starts in the beginning of the process. The key question is
when and whether one side will strategically escalate the conflict in an irre-
versible payoff-relevant move. The critical aspect in our model is the timing
of this irreversible escalation which we refer to as the confrontation. In the
case of a troubled marriage this may occur when one of the parties files for

2Otherwise, the conflict starts in the first period.
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divorce and dispute, say, child-custody. A similar case occurs in commercial
litigation, where the evidence/contractual claims can be changing before it
goes to court. Here, going to actual trial is to start the confrontation. In
many, but certainly not all, cases there is a natural point were the confronta-
tion starts. While we may stay close to the ancient text and describe the
conflict in military terms, our main motivation is in ordinary conflicts.

Sun Tzu describes a series of strategic maneuvers designed to confound
the adversary and induce the enemy to make a critical error before the actual
confrontation. We do not model this part of his work. Instead, we assume
that both sides expend an exogenously given effort prior to the confrontation
in order to induce the enemy to make errors and avoid their own (and, in
this sense, an early preemptive strike is a way to prevent their own mistakes).
The results of these efforts and the moves of nature deliver the process of
changing odds of victory that we describe exogenously. Thus, our modelling
choices focuses on the critical question of the timing of the confrontation.

This section continues as follows: Section 2.1 formally describes the
strategies and gives a brief overview of equilibria in a game theoretic for-
mulation. Section 2.2 formally describes aggressiveness. Section 2.3 expands
on the meaning of patience in the context of conflicts.

2.1 Strategies

2.1.1 Basic Notions and Definitions

A history at period t, ht = (p0, p2, . . . , pt), is the sequence of probabilities
of winning for side 1 up to period t. Given that the process ends if one
side starts the confrontation, we implicitly assume that no side has started
a confrontation until period t while considering a history at period t. The
set of all histories at periods t, t + 1, . . . generate a growing sequence of
σ-algebras, σ(ht) for the process {pt} or equivalently a filtration for {pt},
denoted by {Ft}. The probability triple (i.e., the filtered probability space)
is given by (Ω, {Ft},P), where Ω is the set of all histories of infinite length,
i.e., Ω = [0, 1]∞, and P is the probability measure over Ω and {Ft} is the
natural filtration. Let E be the expectation operator associated with P.

A pure strategy takes histories as input and returns, as output, the choice
of whether to start a confrontation. We formalize pure strategies (in a way
that is common in the literature of stopping games) as follows:
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Definition 1. A pure strategy is a stopping time τ for the filtration {Ft}.3

So, a pure strategy determines when to start the confrontation, depending
on the current and (perhaps) past odds of victory. Given a history at period
t, a side engages in a confrontation at this history if and only if τ = t. For
example, consider the hitting strategy τ1 = inf{ t ≥ 0 | pt ≥ p̄}. In this
strategy, side 1 starts the confrontation when the current odds of victory are
at least p̄. Let τi be side i’s pure strategy, i = 1, 2.

Given a pure strategy profile τ = (τ1, τ2), the process ends at τ1 ∧ τ2 =
min(τ1, τ2). Remembering that ptv+ (1− pt)(−l) = pt(v+ l)− l, the overall
payoff to side 1 is given by

U τ
1 =

∞∑
t=0

βtP(τ1 ∧ τ2 = t)E(pt(v + l)− l|τ1 ∧ τ2 = t),

The payoff can also be written in a more compact form as follows:

U τ
1 = E(βτ1∧τ2(pτ1∧τ2(v + l)− l)),

Definition 2. Given strategy τ̄2, strategy τ̄1 is optimal if

U τ̄
1 = sup

τ1

E(βτ1∧τ̄2(pτ1∧τ̄2(v + l)− l))

That is, τ̄1 is optimal if it produces maximal utility, given the strategy
of the other side. While the concept of optimality does not appear in Art
of War, Sun Tzu does comment on the need for careful contingent planning:
“The victorious army first realizes the conditions for victory, and then seeks
to engage in battle. The vanquished army fights first, and then seeks victory.”

2.1.2 Equilibrium and Hitting Strategies

Our analysis is decision-theoretic, and in that regard we will restrict attention
to the best response of side 1, while assuming the behavior of side 2. We
assume that side 2 uses a hitting strategy with a threshold p̄2 lower than 0.5
(i.e., τ2 = inf{ t ≥ 0 | pt ≤ p̄2}). This rules out the case where side 2 is so
aggressive and attacks with greater chance of losing than winning.

3Let N be the set of natural numbers. Given a triple (Ω, {Ft},P), a stopping time is a
random variable τ : Ω→ N ∪ {∞}, such that the event (τ ≤ t) is Ft-measurable.
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The restriction to hitting strategies are motivated by the fact that in the
case of an i.i.d. process the key characterization result in Ohtsubo (1987)
implies that an equilibrium in hitting strategies exists. In the appendix we
show that the results in Ohtsubo (1987) applies to our model (Theorem 1).
Moreover, side 1’s best response to a hitting strategy is almost surely a hit-
ting strategy and can be characterized explicitly under suitable assumptions
(Proposition 2). Hence, hereafter we assume hitting time strategies.

2.2 Aggressiveness

Aggressiveness is measured by the tendency to initiate the conflict early on.
In this setting, aggressiveness can be defined, in a simple way, using the
thresholds p̄1 and p̄2. The lower the threshold p̄1 the less demanding the
odds of victory side 1 requires to start a war. Hence, the lower the threshold
p̄1 the more aggressive side 1 is. Analogously, consider 2’s hitting strategy
of attacking when 1’s odds of victory pt are below p̄2 (and, hence, 2’s odds
of victory 1 − pt are above 1 − p̄2). The higher the threshold p̄2 the less
demanding the odds of victory side 2 requires to start a war. Hence, the
higher the threshold p̄2 the more aggressive side 2 is.

2.3 The Discount Factor

The common interpretation of the discount rates is time-preference. This is
also how we interpret and measure the degree of patience in this model.

The degree of farsightedness is close to the degree of patience. A decision
maker who highly, but not completely, discounts the future is not the same
as a near myopic decision maker. But these concepts are so closely related
that the results are bound to remain qualitatively the same, no matter which
modelling choice is made. We opted for a discount factor (as opposed to an
exact measure of patience) because it is analytically convenient and it is
closer to most of the literature on repeated and stochastic games. Thus,
along with the literature, as the discount factor β gets larger, side 1 gets
more patient.
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3 Main Results

Proposition 1. Consider side 1’s best response to a fixed hitting strategy of
side 2. If the support of {pt} is included in ( l

l+v
, 1) then a more patient side

1 is less aggressive. If the support of {pt} is included in (0, l
l+v

) then a more
patient side 1 is more aggressive.4

Proposition 1 is consistent with Sun Tzu’s argument on the value of wait-
ing. The case where {pt} support is a subset of ( l

l+v
, 1) corresponds to Sun

Tzu’s condition: side 1 can never be defeated with high probability, that
is any confrontation is more beneficial than peace. In a sufficiently strong
defensive position, there are strong incentives to wait for a better opportu-
nity to attack. So, a more patient side waits longer to start a confrontation.
The second part of Proposition 1 shows the critical role of the proviso “The
good fighters of old first put themselves beyond the possibility of defeat” in
Sun Tzu’s aphorism. If {pt} support is a subset of (0, l

l+v
) then side 1 is a

vulnerable position and, in a confrontation, is defeated with high probabil-
ity. Then, the relation between patience and aggressiveness is reversed. In
a vulnerable condition, it pays to conduce early preemptive strikes. A more
patient side attacks sooner.5

In proposition 1, only the discount factor of side 1 is changing, the strategy
of side 2 is fixed. The thought experiment we are considering is one in which
you have two scenarios. In both scenarios the strategy of side 2 is the same
but the degree of patience of side 1 is different in each scenario. The result
is about the how the level of aggressiveness of side 1 differ in these two
scenarios.

Proposition 1 considers an asymmetric case, where the odds of victory
always favor one side. Now consider the case where both sides have equal
intrinsic strength. In particular, assume that the odds of victory pt are
produced from an i.i.d. uniform random variable over [0, 1]. So, no side

4For a fixed strategy of side 2, let p̄1(β) denote the optimal threshold when the discount

factor is β. For β̂ > β, if the support of {pt} is included in ( l
l+v , 1) then p̄1(β̂) ≥ p̄1(β), if

the support of {pt} is included in (0, l
l+v ) then p̄1(β̂) ≤ p̄1(β).

5Proposition 1 can be extended to work against general strategies of side 2 and with
more general stochastic processes. However, this would require a broader, and notationally
more involved notion of aggressiveness, where stopping times are ordered by stochastic
dominance. This broader definition of aggressiveness can be found from the authors upon
request. The proof of proposition 1, without these assumptions, follows exactly like the
proof in this paper.
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has an intrinsic advantage over the other. Utilizing the additional structural
assumptions, a closed-from solution is possible. The closed-form solution
delivers a better sense of how the best strategies vary with the parameters
of the model.

Proposition 2. Suppose pt is i.i.d. uniform over [0, 1]. Fix p̄2 ∈ (0, 0.5) and
β ∈ (0, 1). Side 1’s best response is the hitting time τ̄1 = inf{t ≥ 0| pt ≥ p̄1},
where

p̄1 =

(
l + v −

√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lp̄2β + 2vp̄2β) + lp̄2β + vp̄2β

)
β (l + v)

.

So, side 1 starts the conflict when the odds of victory are above p̄1. The
existence of equilibria in hitting times when both sides have the same discount
factor was already directly implied by Ohtsubo (1987). Given the closed-
form solution of the best response, it is immediately possible to characterize
equilibria. However our main focus here is the decision theoretic framework,
thus we proceed with the implications of the best responses. The comparative
statics results follow directly from the closed-form solution:

Corollary 1. Suppose pt is i.i.d. uniform over [0, 1] and consider the best
response of side 1 for a fixed β ∈ (0, 1). Side 1 is more aggressive when
facing a more aggressive side 2. (i.e., p̄1 decreases as p̄2 increases).6

A unilateral increase in aggression from the opponent reduces the op-
tion value of waiting for a better opportunity to strike. Thus, it increases
the incentives to strike early. Increased aggressiveness is best answered by
increased aggressiveness.

The thought experiment we are considering in corollary 1 is again with
two scenarios. Here the discount factor is the same in both scenarios but in
scenario 1 side 1 faces a more aggressive side 2, and in scenario 2 side 1 faces
a less aggressive side 2. The result is about how the level of aggressiveness
of side 1 differ in these two scenarios.

A myopic side attacks if the expected payoff of the confrontation is posi-
tive. Therefore, p̄m1 , where

p̄m1 (v + l)− l = 0,

6Consider two hitting strategies of player 2, p̄2, p̄′2 ∈ (0, 0.5) with p̄2 < p̄′2. Let p̄1(p̄2)
and p̄1(p̄′2) denote the respective optimal thresholds against p̄2 and p̄′2. If pt is i.i.d. uniform
over [0, 1] , then p̄1(p̄2) < p̄1(p̄′2).
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is the optimal threshold, if side 1 is myopic.

Corollary 2. Suppose pt is i.i.d. uniform over [0, 1]. Fix p̄2 ∈ (0, 0.5) and

β ∈ (0, 1) and consider the best response of side 1. If p̄2 >
l−
√

(l−v)(l+v)

(l+v)
then

p̄1 < p̄m1 . Thus, p̄1(v + l)− l < 0.

If the opponent is sufficiently aggressive (i.e., if p̄2 is high enough) then,
for a non-myopic side, it is optimal to attack even if the odds of victory
are low enough so that 1’s expected payoff in the confrontation is negative.
A myopic side does not attack if the expected value of a confrontation is
negative and, hence, less than the payoff of peace (0). Thus, a non-myopic
individual engages in a confrontation that a myopic one does not.

Recall that in each period there are three possible outcomes for each side:
peace, defeat and victory. Each one has a corresponding payoff 0, l and v.
Hence even though some of the thresholds only involve v and l the payoff of
peace 0 is implicit in the formula.

For a non-myopic individual the confrontation, although possibly in the
distant future, is inevitable (due to hitting times being almost surely finite)
with one side being the victor and the other side the loser. Although tem-
porary peace is attainable, lasting peace is never a resulting payoff. On the
other hand for a myopic side no confrontation, i.e. peace is one of the three
possible outcomes. This result delivers another sense in which Sun Tzu’s
proviso is critical for his argument on the value of waiting. If the opponent
is very aggressive then the opponent is very likely to attack and, therefore,
a secure position was not attained. Then, for a patient side, it pays to be
aggressive and strike early preemptively.

The optimal threshold p̄1 (= p̄1(β)) depends on the discount factor β.
The next result now shows that whether the optimal threshold increases or
decreases with the discount factor depends on how aggressive the opponent
is. Moreover, the relationship between patience and aggressiveness can be
monotonic.

Corollary 3. Suppose pt is i.i.d. uniform over [0, 1]. Fix p̄2 ∈ (0, 0.5).

If p̄2 <
l−
√

(l−v)(l+v)

(l+v)
then a more patient side 1 is less aggressive. If p̄2 >

l−
√

(l−v)(l+v)

(l+v)
then a more patient side 1 is more aggressive.

The option value of waiting depends on how aggressive the opponent
is. Hence, the results of increased patience depends on how aggressive the
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opponent is. If the opponent is not aggressive (i.e., p̄2 is below a threshold)
then the option value of waiting increases. A more patient side 1 becomes
less aggressive. If the opponent is aggressive then the option value of waiting
decreases. A more patient side 1 becomes more aggressive.

Corollary 3 shows an alternative way in which Sun Tzu’s main point can
be formalized. As mentioned, if the opponent is not aggressive (i.e., if p̄2 is
low) then a secure position was obtained. Then, as Sun Tzu’s points out,
it pays to wait and a more patient individual waits longer before striking.
However, this is only so under Sun Tzu’s condition. If the opponent is ag-
gressive (i.e., if p̄2 is high) then a secure position was not obtained. Then, the
relationship between patience and aggressiveness is reversed. More patient
individuals do not wait and strike sooner preemptively.

4 Future Work

Our basic model is in a decision theoretic framework of conflict of one side
against a behavioral opponent. The main results are comparative statics on
a stopping problem. This is technically challenging. We could successfully
obtain results in the cases of very lopsided conflicts or fair ones. Hopefully
future research will be able to generalize our results to a broader spectrum of
cases. In particular conflicts that are lopsided but are not extremely so are
still outside the scope of this paper. This is an open and, we believe, hard
problem.

The closed-form solutions in our paper makes it tempting to consider an
equilibrium analysis (see our companion paper (Sandroni and Urgun (2015))
for an equilibrium analysis in stopping games, unrelated to eastern philos-
ophy). However, Art of War is written as a practical guide, which is often
related to how to best respond to a given situation. This is more naturally
captured in a decision theoretic model. In particular, its only in a decision
theoretic framework that the level of the aggressiveness of the opponent can
be given exogenously and hence its possible to do comparative statics with
it.

Our basic model constitutes an application of stopping games to the prob-
lem of conflict. Stopping games, by virtue of being reducible exhibit very dif-
ferent characteristics from their repeated or irreducible counterparts, and we
hope that our model can be a stepping stone for explaining other economic
phenomena that are better captured as stopping games.
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5 Conclusion

This paper is based on a single aphorism in Sun Tzu’s Art of War “The
good fighters of old first put themselves beyond the possibility of defeat, and
then waited for an opportunity of defeating the enemy.” A formal analysis
of this aphorism examines the basic trade-off between obtaining an option
of value and giving the opponent an option value. This requires the use of
fairly modern techniques.

Art of War is two millennia old. It is riveting how such an ancient text
can inspire people and research in modern times. We hope that this paper
will be just a first step towards an understanding of Art of War and eastern
philosophy in general, using mathematical models.

6 Appendix

In the main text we use the term “side” to describe the individuals in the
conflict. This emphasizes that our results are in decision-theoretic setting.
However, in the appendix we use the term “player” instead of “side” because
it makes the mathematical analysis more familiar (to us).

6.1 Sufficiency of Pure Strategies in Best Responses

and Hitting Strategies

Given a finite history ht = (p0, p1, p2, . . . , pt) and a profile of strategies (τ1, τ2),
Noting down that the natural filtration Ft by definition includes all the events
up to period t, and in particular ht, let V τ

1 (ht) = (U τ
1 |Ft) be the continuation

payoff for player 1. Recall that P(τ2 = t) is the probability that player 2
starts a confrontation at period t and similarly P(τ1 = t) is the probability
that player 1 starts a confrontation at period t.

We adopt the notion of a randomized strategy from Yasuda (1985). The
equivalence of this notion with others can be found in Solan, Tsirelson, and
Vieille (2012).

Definition 3. Let αn be a process adapted to Fn, with 0 ≤ αn ≤ 1 for
all n. Let xn be a sequence of i.i.d. random variables distributed uniformly
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over [0, 1] and independently of Fn. Then a randomized stopping time for a
strategy α is defined by

τ(α) = inf{n ≥ 0 : xn ≤ αn}

If αn is equal to 0 or 1 for all n then the stopping time is pure.

The notable difference of having randomized strategies is that now P(τi =
t|Ft) ∈ [0, 1] instead of {0, 1}. Given a (possibly suboptimal) profile of
strategies (τ1, τ2) the continuation payoff for player 1 is

V τ
1 (ht) =

∞∑
k=t

βk−tP(τ2 ∧ τ1 = k|Ft)E(pk(v + l)− l|τ2 ∧ τ1 = k,Ft)

Whether players are randomizing or not we have −l < E(pk(v+l)−l) < v,
clearly P(τ2 ∧ τ1 = k) ∈ [0, 1] for all k and pt ∈ [0, 1] for all t and β < 1. This
implies that

−l ≤ V τ
1 (ht) ≤ v for all ht.

Since the continuation payoffs are bounded, taking a dynamic program-
ming approach akin to Abreu, Pearce, and Stacchetti (1990), we can write
the time t problem of player 1 in the following manner.

V τ
1 (ht) = P(τ2 = t|Ft)(ptv − (1− pt)l)+ (1)

(1− P(τ2 = t|Ft)) max
α∈[0,1]

[(1− α)βE(V τ
1 (ht+1)|Ft) + α(ptv − (1− pt)l)].

In problem 1, we allow player 1 to start a conflict with probability α.
Notice that the first term is independent of the choice of player 1. Since
βE(V τ

1 (ht+1)|Ft) is bounded above and below by respectively βv and −βl
there exists a unique p̄1,t such that βEt(V

τ
1 (ht+1) = p̄1,tv − (1− p̄1,t)l.

Thus, in problem 1 we have

arg max
α∈[0,1]

[(1−α)βE(V τ
1 (ht+1)|Ft)+α(ptv−(1−pt)l)] =


1 if pt > p̄1,t

0 if pt < p̄1,t

[0, 1] if pt = p̄1,t

Equivalently, for τ1 that is a best response, we have

P(τ1 = t|Ft) = 1 if pt > p̄1,t

P(τ1 = t|Ft) = 0 if pt < p̄1,t

P(τ1 = t|Ft) ∈ [0, 1] if pt = p̄1,t

(2)
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Observation 1. We assume {pt} to have a continuous pdf at every t. Thus,
almost surely, pt 6= p̄1,t for all t.

Thus, due to observation 1 for almost surely for all t, P(τ1 = t|Ft) ∈ {0, 1}
which means the strategy is pure.

The following two lemmas formalize the intuitive notion that optimally
stopping an i.i.d. process which stops with a fixed probability every period
(via the fixed threshold strategy of side 2) can be done by a hitting time
strategy. Other than formalizing this notion, the lemma’s are unrelated to
the rest of the proofs and can be skipped.

Lemma 1. Suppose the process generating the odds is i.i.d.. If player 2
employs a fixed threshold strategy, then player 1’s best response is almost
surely a stationary strategy, i.e. it is constant across time.

Proof. Let p̄2 denote a fixed threshold strategy for player 2, i.e. player 2
starts a confrontation whenever pt ≤ p̄2. From observation 1 and equation
2 we know that we can restrict attention to pure strategies for player 1
without loss of generality. Thus, player 1 selects a pure strategy τ1 in order
to maximize the following:

max
τ1

∞∑
t=0

βt [P(τ1 = t)(E(pt(v + l)− l|τ1 = t)(1− F (p̄2))

+F (p̄2)E(pk(v + l)− l|pt < p̄2)]

Where F (p̄2) = P(pt ≤ p̄2). Since τ1 is pure, the action space for each
period is finite. Thus, by (Blackwell 1965) (7b) we know that the optimal
strategy τ ∗1 is Markovian. However since player 2 employs a fixed threshold
strategy, Markovian behavior only depends on the current realization, i.e. ∃
Ct ⊆ [0, 1] such that pt ∈ Ct ⇐⇒ τ ∗1 = t . Moreover since the process is
i.i.d. Markovian behavior is almost surely stationary, i.e., Ct = Cs for all
t and s almost surely. Thus for some C ⊆ [0, 1], Ct = C for all t almost
surely.

Lemma 2. Suppose the process generating the odds is i.i.d.. If player 2
employs a fixed threshold strategy, then player 1’s best response is almost
surely a fixed threshold strategy.
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Proof. From lemma 1 we know that the best response to a fixed stationary
strategy is characterized by a confrontation region C ⊆ [0, 1], that is constant

across time, i.e. τ ∗1 = t ⇐⇒ pt ∈ C. Let V
τ∗1 ,p̄2

1 (ht) denote the continuation
payoff for player 1 when player 1 employs the optimal strategy τ ∗1 and player
2 employs a fixed threshold strategy with threshold p̄2. Since both players
employ strategies that are constant across time, it mush be the case that

for any period t, E(V
τ∗1 ,p̄2

1 (ht+1)|Ft) is constant. That is ∃v1(τ ∗1 , p̄2) ∈ [−l, v]

such that E(V
τ∗1 ,p̄2

1 (ht+1)|Ft) = v1(τ ∗1 , p̄2) for all t.But then for any period t
the problem of player 1 is as follows:

P(τ2 = t)(ptv−(1−pt)l)+(1−P(τ2 = t)) max
α∈[0,1]

[(1−α)βv1(τ ∗1 , p̄2)+α(ptv−(1−pt)l)].

Since v1(τ ∗1 , p̄2) is bounded above and below by respectively βv and −βl there
exists a unique p̄1 such that βEt(V

τ
1 (ht+1) = p̄1v − (1− p̄1)l. Thus

arg max
α∈[0,1]

[(1− α)βv1(τ ∗1 , p̄2) + α(ptv − (1− pt)l)] =


1 if pt > p̄1

0 if pt < p̄1

[0, 1] if pt = p̄1

But then τ ∗1 = t ⇐⇒ pt > p̄1 thus the best response to a fixed threshold
strategy is a fixed threshhold strategy, with a measure 0 indifference in p̄1,
which we break in favor of a confrontation.

We present a slightly modified version of a result of Quah and Strulovici
(2013) without proof.

Lemma 3 (Quah & Strulovici). Let H be a regular stochastic process of
bounded variation such that E[Ht] ≤ E[Ht̄] for all t ∈ [0, t̄), and let γ be a
positive regular deterministic process. Then,

E

[∫ t̄

0

γsdHs

]
≥ γ(0)E[H(t̄)−H(0)].7

7The proof is identical to theirs, the change in assumptions only allow us to use inte-
gration by parts without assuming γ is increasing.
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6.1.1 Proof of Proposition 1

Here we will show one side of the argument, the other side is analogous.
Suppose that the support of pt is ( l

l+v
, 1).

Let w1,t = pt(v + l)− l denote the immediate expected returns of player
1 after pt is realized.

Since the support is ( l
l+v
, 1) necessarily for any realization of pt it must

be the case that w1,t ≥ 0. For a strategy profile τ(β) = (τ1(β), τ2(β)), let

V
τ(β)

1 (hk) denote the continuation payoff of player 1 starting from history hk.
Then using a Lebesgue-Stieltjes differential form we must have

V
τ(β)

1 (hk) = E

τ1(β)∧τ2(β)∑
t=k

βt−k∆w1,t−1 + w1,t(∆β
t−k−1)

 ≥ 0

Where ∆ denotes the forward difference operator, i.e. ∆w1,t−1 = w1,t −
w1,t−1 and ∆βt−k−1 = βt−k − βt−k−1.

Since we know that at the optimal hitting threshold player 1’s immediate
payoff has to be equal to the continuation utility we must identify the change
in the continuation utility in order to identify the change in the threshold.
First, keeping the strategy of the second player constant, for β̂ > β utilizing
lemma 3 we have

E

τ1(β)∧τ2(β)∑
t=k

β̂t−k∆w1,t−1 + w1,t(∆β
t−k−1)

 ≥ β̂

β
E

τ1(β)∧τ2(β)∑
t=k

βt−k∆w1,t + w1,t(∆β
t−k−1)

 ≥ 0

Since w1,t ≥ 0 for all realizations, replacing ∆βt−k with ∆β̂t−k on the left

hand side, and dropping β̂
β
≥ 1 yields

E

τ1(β)∧τ2(β)∑
t=k

β̂t−k∆w1,t−1 + w1,t(∆β̂
t−k−1)

 ≥ E

τ1(β)∧τ2(β)∑
t=k

βt−k∆w1,t−1 + w1,t(∆β
t−k−1)


Hence, the continuation values increase when the strategies remain the

same. Now, we need to show that the optimal stopping rules, will indeed be
ordered. Letting τi(β̂) denote the optimal strategy with β̂, for a contradiction
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suppose Ψ = {ω : τ1(β) ≥ τ1(β̂)} has strictly positive probability, but then
by a similar calculation to above on Ψ we will have

E

τ1(β)∧τ2(β)∑
τ1(β̂)∧τ2(β)

β̂t−k∆w1,t−1 + w1,t(∆β̂
t−k−1)|Ψ

 ≥ E

τ1(β)∧τ2(β)∑
τ1(β̂)∧τ2(β)

βt−k∆w1,t−1 + w1,t(∆β
t−k−1)|Ψ


But then waiting is better even on the set Ψ, contradicting its optimality.

Thus we must have the stopping times weakly ordered.

6.1.2 Proof of Proposition 2

Let p̄2 denote a fixed threshold for player 2. From lemma 6.1 we know
that player 1will optimally utilize a fixed threshold strategy against p̄2.Let
p1 > p̄2 denote a fixed threshold for player 1. Then, with a slight abuse
of notation the continuation payoff of player 1 denoted, E(V1|p̄2, p1), can be
written down as follows:

E(V1|p̄2, p1) =
∞∑
t=0

βt(F (p1)−F (p̄2))t
(∫ p̄2

0

[p(v + l)− l]f(p)dp+

∫ 1

p1

[p(v + l)− l]f(p)dp

)

Plugging in the uniform distribution yields the following expression:

E(V1|p̄2, p1) =
∞∑
t=0

βt(p1 − p̄2)t
(∫ p̄2

0

[p(v + l)− l]dp+

∫ 1

p1

[p(v + l)− l]dp
)

With some algebra, the expression simplifies to:

E(V1|p̄2, p1) =
1
2
v − 1

2
l + lp1 − lp̄2 − 1

2
lp2

1 + 1
2
lp̄2

2 − 1
2
vp2

1 + 1
2
vp̄2

2

1− β(p1 − p̄2)
(3)

Due to equation 2 we know that if p1 is selected optimally, at the exact
threshold (i.e. pt = p1) the discounted continuation payoff and the payoff
from immediate confrontation should be the same.
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Thus letting p̄1 denote the optimal threshold we must have

β(
1
2
v − 1

2
l + lp̄1 − lp̄2 − 1

2
lp̄2

1 + 1
2
lp̄2

2 − 1
2
vp̄2

1 + 1
2
vp̄2

2

1− β(p̄1 − p̄2)
) = p̄1v − (1− p̄1)l

p̄1 =

(
l + v −

√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lp̄2β + 2vp̄2β) + lp̄2β + vp̄2β

)
β (l + v)

(4)

Given that p̄2 ≤ 1/2 we have p̄1 ≥ 1/2 since

p̄1 ≥
1

2
+

1

β
(1−

√
(l + v) (l + v − (l − v)(β − β2))

l + v
)

Furthermore given that p̄2 ≥ 0 we have p̄1 ≤ 1 since

p̄1 ≤
l + v −

√
(l + v) (l + v − 2lβ + lβ2 − vβ2)

β(l + v)
≤ 1

6.1.3 Proof of Corollary 1

Differentiating equation 4 with respect to p̄2,

∂

∂p̄2

(

(
l + v −

√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lp̄2β + 2vp̄2β) + lp̄2β + vp̄2β

)
β (l + v)

)

= 1−

(√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lβp̄2 + 2vβp̄2)

)
l + v − 2lβ + lβ2 − vβ2 + 2lβp̄2 + 2vβp̄2

≤ 0

The term above is negative because p̄2 ≤ 1/2

6.1.4 Proof of Corollary 2

Using equation 4 we solve p̄1(v + l) − l < 0 for p̄2. Straightforward algebra
yields
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0 >

(
l + v −

√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lp̄2β + 2vp̄2β) + lp̄2β + vp̄2β

)
β (l + v)

(v + l)− l√
(l + v) (l + v − 2lβ + lβ2 − vβ2 + 2lp̄2β + 2vp̄2β) > (l + v)(1− βp̄2)− lβ

p̄2 >
l2 + lv −

√
(l − v)(l + v)3

(l + v)2

p̄2 >
l −
√

(l − v)(l + v)

(l + v)

6.1.5 Proof of Corollary 3

Suppose that the second player is decision theoretic player that is playing
with a stationary hitting time, characterized by the threshold p̄2. Since the
discount factor has no impact on the payoff of immediate confrontation using
problem 1 and equation 2 it is easy to see the sign of the continuation value
determines the comparative statics for the single player problem. Focusing
on equation 3 we simplify the necessary condition for the continuation value
to be positive ,

1
2
v − 1

2
l + lp1 − lp̄2 − 1

2
lp2

1 + 1
2
lp̄2

2 − 1
2
vp2

1 + 1
2
vp̄2

2

1− β(p1 − p̄2)
≥ 0

Plugging in the optimal value of p̄1 and isolating p̄2 we have

p̄2 <
l2 + lv −

√
(l − v)(l + v)3

(l + v)2

p̄2 <
l −
√

(l − v)(l + v)

(l + v)

6.2 Equilibrium Existence

The expectation of a resulting conflicting given current odds is crucial to iden-
tify the strategies, as well as characterizing the equilibria. In that direction
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for each m ∈ N let the following sequences of random variables {(ψmn , φmn )}mn=0

be defined by backward induction in the following manner:

(ψmm, φ
m
m) = (pm(v + l)− l, v − pm(v + l))

(ψmn , φ
m
n ) =

{
(pn(v + l), v − pn(v + l)) if (pn(v + l), w2

n) ≥ (βE
(
ψmn+1|Fn

)
, βE

(
φmn+1|Fn

)
)

(βE
(
ψmn+1|Fn

)
, βE

(
φmn+1|Fn

)
) o/w

Here we first notice that this construction is very similar to the construction
of a Snell envelope, extended to accommodate 2 players. (Ohtsubo 1987)
shows that ψn = limm→∞ ψ

m
n and φn = limm→∞ φ

m
n are well defined. Similar

to the Snell envelope, the P-limit of these sequences define the essential
suprema, which was shown to be equal to a pair of equilibrium payoffs in
the game (Ohtsubo 1987). Notice that in this characterization there are no
strategies, hence the information from the filtration Fn is limited to just how
many future periods are accounted for, thus in the limit E (ψk+1|Fk) and
E (φk+1|Fk) converge to to two real numbers ψ, φ ∈ [−l, v].

Here we present the equilibrium theorem without proof.

Theorem 1 (Ohtsubo).

τ̄ 1 = inf{k ≥ 0|βE (ψk+1|Fk) ≤ w1
k}

τ̄ 2 = inf{k ≥ 0|βE (φk+1|Fk) ≤ w2
k}

constitute an equilibrium of this game. Where, the sequences ψ, φ correspond
to the equilibrium values.
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