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Abstract

This paper examines the effects of patience on ordinary conflicts
such as divorce, price wars and commercial litigation. Players opti-
mally decide when, if ever, to start a destructive confrontation. In
the unique equilibrium, there is a tight connection between patience,
aggressiveness and strength. In particular patience may lead to imme-
diate confrontation (the most ineffi cient outcome). This ineffi ciency is
caused by preemptive moves that deny option values to the opponent.
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“Warfare is the greatest affair of state, the basis of life and
death, the way to survival or extinction. It must be thoroughly
pondered and analyzed.”Sun Tzu, Art of War.

1 Introduction

Conflict is a regular occurrence for almost everyone. People divorce, engage
in commercial litigation, political infights, and professional disputes. The
same applies to firms. They engage in price wars, hostile take-overs and
aggressive marketing campaigns. While omnipresent, direct confrontations
do not occur exogenously. Instead, someone must start it and the timing
of the confrontation influences the resolution of the conflict. For example,
consider two firms facing random stock valuations and deciding when, if ever,
to engage in an aggressive take-over. The timing of the take-over is critical
for its resolution. Hence, a basic question is when to start a confrontation.
We examine a two-player infinite horizon model where, at every period,

each player decides whether to engage the other side. If one player attacks,
the game ends with one side as the victor. Otherwise, they both face each
other the next day. The odds of victory changes every period. Confrontations
are destructive: the disutility of the loser outweighs the gains of the victor.
So, this is a model of adversaries facing changing opportunities and assessing
whether the time has come to attack. A decisive factor in the resolution of
the conflict is the timing of the confrontation.
In this model, there is a unique equilibrium. Under suitable conditions,

as players become more patient they become unambiguously more aggressive
(i.e., they attack sooner). Patient players do not wait: when completely
patient they become so aggressive that the confrontation starts immediately.
This is the most ineffi cient outcome in this game. Thus, patience does not
allow for effi ciency. It precludes it and ensures ineffi ciency.

The players in this game start in a potential conflict and may decide
whether to engage in an actual conflict. This is unlike repeated games where
players are from the start in a conflict they cannot escape from (i.e., they
cannot modify the game they are in). The results are in stark contrast:
equilibrium payoffs are uniquely identified in our model whereas as several
folk theorem have shown, there are multiple equilibrium payoffs in repeated
games. Patience is detrimental to effi ciency in this model whereas it is es-
sential to achieve effi ciency, at least potentially, in repeated games.
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The basic trade-off in repeated games is whether to take a costly ac-
tion that may induce the adversary to behave more favorably in the future.
Hence, patience is necessary to induce mutually beneficial behavior. In this
model, the basic trade-off is that waiting delivers an option value (i.e., the
opportunity to start the actual conflict in more favorable terms). However,
waiting also delivers the opponent an option value. So, the effects of pa-
tience in this game are, a priory, unclear. The option of waiting for a better
opportunity to attack is more valuable to a more patient player. On the
other hand, more patient players suffer greater disutility from delivering the
opponent this option value. The formal analysis reveals that the results of
patience are, in fact, unambiguous. The benefit of the former option value
is dominated by the loss associated with the latter.
The results mentioned above assumed parity of strength (i.e., the odds

of victory are generated, ex-ante, in a way that does not favor either player)
and this is commonly known. Now consider the case where there is uncer-
tainty about relative strength. This uncertainty is a potential deterrent for
confrontations. So, one side is intrinsically stronger, but, initially, it is un-
known which one. After several opportunities arise, players can learn about
their relative strength. Here, the basic trade-off continues at a higher level.
If a player does not stop the learning process (i.e., attacks) then this player
obtains valuable knowledge, but this also grants the adversary the same
knowledge.
This process is closely related to a game-theoretic bandit problem where

players learn by experimentation. In this model, the bandits are negatively
correlated, good news for one player is bad news for the other. However, the
main novelty, compared to the existing game-theoretic literature on social
experimentation (see, for example, Bolton and Harris (1999) and Rosenberg,
Solan, and Vieille (2007)), is that one player stopping or continuing the
learning process has more than an informational effect on the other player:
it is also directly payoff-relevant for the other player.
Our main results are as follows: Uncertainty about relative strength does

not ensure peace. This ineffi ciency cannot be resolved by patience, no matter
how great. Moreover, if a player is revealed to be intrinsically stronger, then,
for this player, greater patience leads to less aggressiveness. A weaker, more
patient player attacks sooner. With perceived superior strength, it pays to
wait before striking. In more vulnerable conditions, preemptive strikes are
required. These results identify the key conditions under which patience is
conducive to aggressiveness: relative strength is the key mediator on the

3



relationship between patience and aggressiveness.
Our basic model is a stopping game. Stopping games are a natural frame-

work for a wide variety of economic phenomena. While related to bargaining
models and to repeated games, they are not nearly as used as these mod-
els. This is, in part, due to the fact that beyond existence of equilibria and,
sometimes their value, little is known about stopping games. We character-
ize equilibria and more importantly obtain comparative statics results even
when social experimentation is added to the model. We hope that our novel
methods are a first step towards a widespread use of stopping games.
After a brief literature review, Section 2 introduces the game of conflict.

The case of known strength is in Section 3. The learning model is in Section
4. Section 5 concludes. Proofs are in the appendix.

1.1 Relation with the Existing Literature

The ineffi ciency of conflict has been widely studied in the political economy
literature. Garfinkel and Skaperdas (2007) is an extensive survey, but see also
Fearon (1995), Powell (1999), Powell (2004), Powell (2006), Dal Bó, Hernán-
dez, and Mazzuca (2015). The political economy literature focuses on the
understanding of the existence of ineffi cient inter-state wars, and how insti-
tutions can affect and prepare for them. We focus on everyday conflicts, the
question of when to start a confrontation and the relation between patience,
strength and aggressiveness. In addition, most of the political economy liter-
ature uses static models. There are notable exceptions. For example, Powell
(1993) and Acemoglu and Robinson (2001) consider dynamic elements in a
model fundamentally different from ours.
Our setting eventually divides a constant sum and so, can be related to

bargaining models. We do not survey this large literature. Serrano (2007)
provides an extensive survey, but see also Osborne and Rubinstein (1990)
and Roth (1985). In Abreu and Gul (2000) and Compte and Jehiel (2002),
players decide when to take action (concede). This gives higher payoffs to
the other side. In our model, acting is to fight which never yields higher
expected payoffs to the other side. Bargaining typically has a war of attrition
structure. Our model does not have a war of attrition structure because the
status-quo is effi cient (peace) and the decisive action leads to an ineffi cient
confrontation.
Single player stopping problems is also a large literature that we do not

survey here. The current state of the art on the effects of discount rates
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in stopping problems is the work by Quah and Strulovici (2013). Under
suitable conditions, our methods extend their decision theoretic results to a
game theoretic framework.
The literature on stochastic games typically deals with more general prob-

lems such as existence of equilibria and sometimes, their value (see, for ex-
ample, Shapley (1953), Mertens and Parthasarathy (1991), Solan and Vieille
(2002)) with a main focus in irreducible games. A related strand in stochas-
tic games considers games with absorbing states, where the game is reducible
(when players’ actions may change the game permanently). In particular
Wiseman (2017) studies a game of repeated oligopoly, where firms might
enter a price war and be forced to exit the market. Unlike our game, in
Wiseman (2017) players have a strong incentive to induce the other players
to exit the game. As long as players haven’t exited, the oligopoly setting
allows for intertemporal trade of continuation payoffs to avoid a price war.
Even though there are no issues of dimensionality in the stage game, an anti-
folk theorem is also obtained, in the sense that collusion is not sustainable.
Our results are obtained under different conditions. In our setting when one
player stops the game the other player typically receives low payoffs and
cannot continue the game. Despite the differences in settings, the anti-folk
theorems highlights the importance of reducibility in stochastic games. In
fact our anti-folk result which arises due to reducibility is also in line with the
sharp observation in Sorin (1986) where a stochastic discounted game with
absorbing states (hence reducible) has a unique equilibrium payoff regardless
of the discount factor.
Within stochastic games we build upon the work in stopping games (see

Dynkin (1969), Neveu (1975), Yasuda (1985), Rosenberg, Solan, and Vieille
(2001), Szajowski (1993), Shmaya and Solan (2004), Ekstrom and Villeneuve
(2006), Ohtsubo (1987)). Stopping games are reducible. In many reducible
games, it is diffi cult to obtain much more than existence of equilibria. We
build upon Ohtsubo (1987) for characterizing equilibria and we utilize either
direct calculations or the single player techniques of Quah and Strulovici
(2013) on an extension of the Snell (1952) Envelope to achieve our compara-
tive statics. The Snell envelope is a general, but mostly intractable, solution
to stopping problems. We side step intractability by utilizing martingale
techniques, focusing on ordering payoffs.
As mentioned in the introduction, our learning model resembles a social

bandit problem where players learn by experimentation (see Bolton and Har-
ris (1999), Bergemann and Välimäki (1996) and Rosenberg, Solan, and Vieille
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(2007)). Klein and Rady (2011) consider negatively correlated bandits, where
good news for one player is bad news for the other. However, in our model,
when one player stops so must the other. Hence, in our model, the actions
of one player are not only informationally relevant to the other player and,
in this sense, indirectly payoff-relevant and but also directly payoff-relevant
as they may change the game itself. This direct payoff relevance signifi-
cantly changes the strategic interaction and required us to develop a novel
approach. Here, we build upon techniques developed by Ohtsubo (1987) for
characterizing the equilibria.

2 Basic Model and Notation

2.1 The game

There are two players 1 and 2. At each period either player either starts a
confrontation (fight) or not. If neither player engages in a fight, they get
0 payoffs that period and the game continues. If one player starts a con-
frontation, the opponent cannot avoid it and the game ends with one player
defeated. The winner gets utility v > 0, and the loser utility −l, l > 0, l > v.
So, confrontations are destructive: the payoff of victory (v) is less than the
disutility of defeat (l).1 In case of a confrontation at period t, player 1 is
the victor with probability pt. At the beginning of each period, both play-
ers observe player 1’s probability of winning (hence player 2’s probability of
winning which is, 1− pt). Thus, players choose whether to start a confronta-
tion after observing the odds of victory. The probability pt of the player 1
winning a confrontation is produced by a random variable p̃t with continuous
probability density and full support in [0, 1]. Both players discount future
payoffs with a common, constant discount factor β ∈ (0, 1). Both players
have a common belief over the distribution of p̃t.
Players 1 and 2 are in a potential conflict. The key question is whether

and if so when one of them will strategically escalate the conflict in an ir-
reversible payoff-relevant move. For example, consider two companies facing
idiosyncratic shocks to costs and demands and deciding when to start a con-
frontation which can be in the form of a price war, a break off from an
informal collusion or an aggressive marketing campaign. In the case of a
troubled marriage, the open confrontation may occur when one of the par-

1Otherwise, the confrontation happens in the first period.
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ties files for divorce and dispute, say, child-custody. A similar case occurs in
commercial litigation, where the evidence/contractual claims can be chang-
ing before it goes to court. So, going to trial is confronting the opponent.
In many, but not all, cases there is a natural point that can be construed
as the start of the confrontation at its earnest. A significant limitation in
our setting is that once the confrontation starts there are no more strategic
interactions. While this limits the applicability of our model, it helps focus
our results on the issue of when to start the conflict.

2.2 Strategies

The history at period t, ht = (p0, p1, . . . , pt), is the sequence of probabilities
of winning for player 1 up to period t. Given that the game ends if a player
starts a confrontation, we implicitly assume that no player has started a
confrontation if a history is relevant for decision making. The set of all
histories generate a growing sequence of σ-algebras, σ(ht) for the process {p̃t}
or equivalently a filtration for {p̃t}, denoted by {Ft}. The probability triple
(i.e., the filtered probability space) is given by (Ω, {Ft},P), where Ω is the
set of all histories, i.e., Ω =

⋃∞
t=1 [0, 1]t, and P is the probability measure over

Ω. Let E be the expectation operator associated with P. Unless otherwise
noted, we assume that (p̃t+1|Ft) has a continuous density with full support
on [0, 1] for all t and its realizations are denoted pt. For consistency, with
a slight abuse we assume time starts at the end of period −1 with a trivial
algebra, right before p0 is realized.
A pure strategy takes finite histories as input and returns, as output, the

choice of whether to start a confrontation. We formalize pure strategies (in
a way that is common in stopping games) as follows:

Definition 1. A pure strategy is a stopping time τ for the filtration Ft.2

So, a pure strategy determines when to confront, depending on the current
and (perhaps) past odds of victory. Given a history at period t, a player
starts a confrontation at this history if and only if τ = t. For example,
consider the hitting strategy with a fixed threshold τ 1 = inf{ t ≥ 0 | pt ≥ p̄}.
In this strategy, player 1 starts the confrontation when the current odds of
victory are greater than p̄. Let τ i be player i’s pure strategy, i = 1, 2.

2Let N be the set of natural numbers. Given a triple (Ω, {Ft},P), a stopping time is a
random variable τ : Ω→ N ∪ {∞} such that P(τ = t) is Ft measurable.
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Given a pure strategy profile τ = (τ 1, τ 2), the game ends at τ 1 ∧ τ 2 =
min(τ 1, τ 2). So, the overall payoff to players is given by

U1(τ) =

∞∑
t=0

βtP(τ 1 ∧ τ 2 = t)E(p̃t(v + l)− l|τ 1 ∧ τ 2 = t),

U2(τ) =

∞∑
t=0

βtP(τ 1 ∧ τ 2 = t)E(−p̃t(v + l) + v|τ 1 ∧ τ 2 = t).

Players’payoffs can also be written in a more compact form as follows:

U1(τ) = E(βτ
1∧τ2(p̃τ1∧τ2(v + l)− l)),

U2(τ) = E(βτ
1∧τ2(−p̃τ1∧τ2(v + l) + v)).

2.2.1 Equilibrium

Definition 2. A pair of stopping times τ̄ = (τ̄ 1, τ̄ 2) is an equilibrium if

U1(τ̄) = sup
τ1
E(βτ

1∧τ̄2(p̃τ1∧τ̄2(v + l)− l))

U2(τ̄) = sup
τ2
E(β τ̄

1∧τ2(−p̃τ̄1∧τ2(v + l) + v))

That is, a pair of stopping times τ̄ = (τ̄ 1, τ̄ 2) is an equilibrium if there are
no profitable unilateral deviations from them. So, in equilibrium, each player
best responds to the opponent’s plans. In this definition only pure strategies
are considered. In the appendix, we consider mixed strategies and show that
even if mixed strategies are allowed, the equilibrium payoff set remains the
same.

Remark 1 (Mutually assured destruction). The pair of strategies where play-
ers start a confrontation at every history is always an equilibrium.

Once a player commits to fighting the other one can not back off. Hence,
mutually assured destruction is always an equilibrium because if the opponent
always attacks then anything is a best response. However these strategies
are weakly dominated as players start confrontations even when they have
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almost no chance of winning.3 For the remainder of the paper, we disregard
this equilibrium and focus on non-dominated strategies.

Definition 3. τ i is a fighting strategy if P (τ i <∞) = 1

So, there is no lasting peace in fighting strategies. If fighting strategies
are employed in equilibrium, we call it a fighting equilibrium. Due to the
destructive nature of the confrontation, any fighting equilibrium is Pareto
dominated by indefinite peace.

Remark 2 (Equilibria only in Fighting Strategies). Equilibria has to be in
fighting strategies.

When facing a destructive confrontation where span of the odds of victory
is broad enough (i.e., the odds of victory can take values anywhere within
bounds close to 0 and 1), fighting has to eventually occur. At one point,
victory will be near certain for one side and that point, the player with
favorable odds should start the confrontation. Both players know this and,
hence, there is no hope for indefinite peace. This inevitability of fighting is
also essential in characterizing the set of equilibrium payoffs as well. Once
the confrontation happens, no matter the odds, the payoffs to the players is a
constant sum (v− l). The argument is slightly more involved but like a one-
shot constant sum game, there is a unique pair of equilibrium values in our
game. The uniqueness result can be found in Yasuda (1985) and makes use
of a minmax like argument on a value operator, the value characterization is
done by Ohtsubo (1987) by a backward induction like argument again using
a value operator starting from the moment where the confrontation occurs.
We include adapted versions of both results in the appendix for completeness.

3Consider the mutually assured destruction strategy of player 1, τ1,Mad = inf{ t ≥ 0 |
pt ≥ 0}, and consider the alternative strategy τ1,1/2, where player 1 confronts at period 0
if and only if p0 ≥ 1/2 and confronts in every other period at any history. For any strategy
of player 2, U1(τ1,Mad, τ2) ≤ U1(τ1,1/2, τ2), with strictly inequality for some strategies
of player 2. To see this observe that, in histories such that p0 < 1/2, and τ2 > 0 the
payoff associated with τ1,Mad is strictly less than v−l

2 < 0, whereas τ1,1/2 yields a payoff
of β v−l2 > v−l

2 . In all other histories, the two strategies produce the same payoffs. By a
similar logic any strategy that prescibes certain fighting based on calendar time alone and
disregards the current odds are also dominated and we disregard those as well.
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2.3 Aggressiveness

Aggressiveness is measured by the tendency to confront early on. Consider
player 1’s hitting strategy with a fixed threshold of attacking when the odds
of victory pt are above p̄1. The lower the threshold p̄1 the less demanding the
odds of victory player 1 requires to start a confrontation. Hence, the lower
the threshold p̄1 the more aggressive player 1 is. Analogously, consider player
2’s hitting strategy with a fixed threshold of attacking when player 1’s odds of
victory pt are below p̄2 (and, hence, player 2’s odds of victory 1−pt are above
1− p̄2). The higher the threshold p̄2 the less demanding the odds of victory
player 2 requires to start a war. Hence, the higher the threshold p̄2 the more
aggressive player 2 is. Therefore, in the special case of hitting strategies,
aggressiveness can be defined by the thresholds p̄1 and p̄2. We also consider
a definition of the impact of patience on aggressiveness that does not rely
on hitting strategies. This broader definition of aggressiveness is particularly
useful in the learning model. Letting τ i(β) denote the equilibrium stopping
time for player i associated with the discount factor β;

Definition 4. For player i’s pure strategies τ i(β), τ i(β̂). A more patient
player is more aggressive at time t if for any s ≥ t

P (τ i(β̂) ≤ s|Ft) ≥ P (τ i(β) ≤ s|Ft)

whenever β ≤ β̂. Conversely, at time t, a more patient player is less aggres-
sive if this inequality holds with the roles of β and β̂ reversed.

So, an increase in patience makes the player more aggressive if the strate-
gies with higher discount factor increase the odds of starting the confrontation
within any finite time frame.

2.4 Strength

In this model, the stronger party is not assured to win a fight, but strength
delivers better odds of victory. We formalize strength as follows:

Definition 5 (Expectations of Imminent Confrontation).

w1
t = vpt − (1− pt)l,

w2
t = −ptl + (1− pt)v
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So, w1
t is the expected payoff of player 1 at period t, if a confrontation

starts in that period. Analogously, w2
t is the expected payoff of player 2 at

period t, if a confrontation starts in that period. These values are exogenously
given and are not related to the strategies chosen by the players.

Definition 6 (Intrinsic Strength). Player i is intrinsically strong if for all
t, E(wit) > 0.

So, player i is intrinsically strong if, at any period, ex-ante (i.e., before
the odds of victory are realized) the expected payoff of a confrontation is
greater than the payoff obtained in peace. It is not possible for both sides
to be strong, but it is possible that neither is (e.g., when there is parity in
power).

3 Known Strength

We first examine a special case where both players have equal intrinsic
strength and they know it. This determines the extent to which parity in
strength and the destructive nature of confrontations can ensure peace and
hence, effi ciency.

Theorem 1. Assume that player 1’s probability of victory pt is uniform i.i.d.,
over [0, 1] and this is commonly known. There is a unique set of sustainable
payoffs in equilibrium. These payoffs are supported by fighting strategies,
given by hitting strategies with fixed thresholds p̄1 < 1 and p̄2 > 0:

τ̄ 1 = inf{t ≥ 0 | pt ≥ p̄1} and τ̄ 2 = inf{t ≥ 0 | pt ≤ p̄2} where

p̄1 =
1

2
+

1

4β
−

√
(l + v)

(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
4β(l + v)

p̄2 =
1

2
− 1

4β
+

√
(l + v)

(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
4β(l + v)

So, parity of power does not ensure peace. Theorem 1 shows that the
destructive nature of confrontations is not a suffi cient deterrent either. Once
the odds of victory tilts suffi ciently towards one side, the confrontation starts.
That is, the equilibrium is in fighting strategies and, hence, ineffi cient.
The closed-form solutions in Theorem 1 are obtained through a combi-

nation of straightforward calculations along with the existence of Markovian
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equilibria in Mertens (2002), and a key result in Yasuda (1985) to ascer-
tain that there is a unique pair of equilibrium payoffs. We show that, in
our model, any Markovian equilibria is also in hitting strategies with fixed
thresholds. Hence, there exists an equilibria in hitting strategies with fixed
thresholds. With some algebra, we obtain closed-form solutions for such an
equilibrium.
The intuitive reason for a unique pair of sustainable values is reducibility.

After a confrontation the game ends, thus there is no way to make subgame
perfect threats that would enlarge the set of equilibrium payoffs. The fighting
strategies identified here are not necessarily the only pair of strategies that
sustain the equilibrium payoffs, but any other pair of equilibrium strategies
(possibly mixed) sustain the same payoffs. Thus, we focus on fighting strate-
gies given by hitting strategies with fixed thresholds because, with them, we
can calculate an equilibrium in closed-form. This permits direct comparative
statics results. Paradoxically, we now show that the destructive nature of
confrontations makes patience conducive to hasty engagements.

Corollary 1. In equilibrium, both players become more aggressive as the dis-
count factor increases. A confrontation arises almost immediately as players
become fully patient (i.e., p̄1 and p̄2 converge to 0.5 as β goes to 1).

The relationship between patience and aggressiveness is unambiguous.
More patient players are more aggressive. As the players become completely
patient, with near certainty, the confrontation starts immediately. This fol-
lows even if the odds of victory in the first period are such that the con-
frontation is ex-ante damaging for both sides.
Corollary 1 is seemingly in contrast with commonsensical ideas on the

relationship between patience and aggressiveness. An appeal to patience is
often understood as an appeal to peace and tranquility, but seldom, if ever,
to aggressivity. Indeed forgoing an opportunity to attack delivers an option
value. It gives the player a chance to confront the opponent in better terms
in the future. More patient players obtain greater discounted utility from
this option value. However, forgoing an opportunity to attack can be fatal
because it also grants enemies the option value of starting the confrontation
under better conditions for them. This discounted disutility is greater if the
player is more patient. Overall, given that confrontations are destructive, the
incremental disutility of granting an option value to the opponent surpasses
the additional benefit from obtaining an option value. More patient players
have a greater incentive to preempt the opponent and start the conflict earlier
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since the discounted expected disutility of future destructive confrontations
are enhanced. Hence, they are more aggressive.
The setting of theorem 1, features an i.i.d. distribution and parity in

strength. In this sense, this is the closest setting to a repeated game, permit-
ted by our framework. Yet, the results are strikingly different from those in
repeated games. Unlike folk theorems, there is a unique pair of equilibrium
payoffs. More patient players fight sooner, diminishing expected payoffs to a
minimum as they become more patient. So, patience does not enable play-
ers to approach Pareto effi cient behavior (which would be indefinite peace).
Instead, it leads to the most extreme ineffi ciency. Unlike repeated games,
where patience is instrumental for welfare, patience leads to an immediate
destructive confrontation in this game.
The effect of patience in parity of strength can be reinforced by the idea

that, in equilibrium, the increased levels of aggressiveness hold even if we
fix the discount of the opponent as shown below: Let τ̄ i(β1, β2) be the
equilibrium strategies associated with the different discount factors (under
Theorem 1’s setting):

Corollary 2. In equilibrium, for any discount factor β with β1 = β2 = β
and for any period t ≥ 0,

∂P(τ̄ i(βi, βj) ≤ t)

∂βi
> 0

So, in equilibrium, a more patient player is also more aggressive, even
when the discount factor of the other player remains the same.
In this section, we made assumptions that were meant to simplify enough

the notoriously diffi cult stopping games so that it becomes suffi ciently tractable
to obtain close-form solutions and comparative statics results. This allows
for insights that we now show are robust in more complex settings. In par-
ticular, we relax key assumptions and introduce social experimentation into
this model.

4 Unknown Strength and Learning

In a conflict players may not know how comparatively powerful their adver-
saries are. This uncertainty is a potential deterrent for confrontation and is
now captured in a learning model. Players learn about their relative strengths
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by observing the opportunities arising, while still deciding when to confront.
This fits well with everyday conflicts because it allows for underlying trends
that need to be learned. For example, in commercial litigation if one side has
a more legitimate claim then the evidence that is slowly gathered will tend
to favor that side. Similarly, in case of a potential dispute over child custody,
there are trends in the parents careers that effect their ability to provide for
the child.
As before, there are changing opportunities to engage in a confrontation.

If neither side start a confrontation early on, both players observe these
opportunities and infer from them the odds of victory in each period and also,
in part, the process generating these odds. So, this is a stopping game with
social experimentation. Now, waiting is an opportunity to learn the relative
strengths and conversely either player attacking concludes the learning period
for both players.
Each player now faces two different drawbacks and two different benefits

in starting a confrontation. Fighting early on forgoes the opportunity to learn
more about the relative strength before the confrontation starts. Hence, it
forgoes critical information for a proper decision. Moreover, fighting also
forgoes the opportunity of starting the confrontation in better terms. On the
other hand, fighting early on precludes the opponent to obtain the same op-
portunities for learning and for determining the timing of the confrontation.
So, the basic trade-off is whether the option value from not fighting exceeds
the disutility of granting this option values to the opponent. But now this
trade-off has the extra complexity coming from the uncertainty over relative
strength and the value of experimentation.
So, assume that the i.i.d. process that generates the odds of victory is

either coming from a distribution F 1 or F 2. Both distributions have contin-
uous densities f 1and f 2 with full support in [0, 1]. We further assume that
f 1(x) = f 2(1−x) and so if a distribution favors one of the players, the other
distribution favors the other player in the same way. In the first distribution,
F 1, player 1 is intrinsically strong. So, in distribution F 2, player 2 is in-
trinsically strong. The players share the same non-degenerate prior.4 Let µt
denote the posterior belief, at period t, that player 1 is intrinsically strong.
In this setting, good news for one player is bad news for the other, like in a
negatively correlated bandit setting.
The main novelty in this model is that there are two different ways in

4There is a common inital belief about the likelihood of F1, strictly between 0 and 1.
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which the experimentation of one player affects the other player. If a player
decides to fight then, like in other game theoretic models of experimentation
(e.g. Bolton and Harris (1999) and Rosenberg, Solan, and Vieille (2007)),
this has an indirect effect on the payoffs on the other player because the
opponent can no longer obtain critical information. However, in addition
to the interactions through information, there is also a direct effect on the
payoffs of the other player. The payoffs of the opponent changes when the
confrontation starts.
Uncertainty about relative strength may make players hesitant to con-

front their adversaries. Hence, this uncertainty is a potential deterrent for
conflict, but, as we show, it is not an effective deterrent. In our model the
uncertainty diminishes, but it is never fully resolved in finite time. In spite of
this uncertainty the players stop the process in finite time and attack. This
follows because players are once again reluctant to give option values to the
opponent.
Our main results show that there is a unique sustainable payoff, which

is supported by fighting strategies. Hence, the equilibrium is never effi cient.
Uncertainty about relative strength is not enough to ensure indefinite peace,
no matter how patient players might be. Moreover, the model is still tractable
enough to deliver clear comparative static results.
Our results are formalized as follows: for player 1, the expected payoff

of a confrontation next period is E
(
w1
t+1|Ft

)
= E

(
w1
t+1|µt

)
. For player

2, it is E
(
w2
t+1|Ft

)
= E

(
w2
t+1|µt

)
. Assume that µt is suffi ciently high at

period t so that E
(
w1
t+1|µt

)
> 0. Then, the belief that player 1 is strong is

suffi ciently firm so that player 1 has, ex-ante, a positive expected valuation for
a confrontation next period (even though the confrontation is destructive).
In this case, we say that players believe that player 1 is intrinsically strong
at period t. The same terminology applies to player 2, with w2

t+1 replacing
w1
t+1.

Theorem 2. There is a unique set of sustainable payoffs in equilibrium.
These payoffs are supported by fighting strategies. Moreover, if player i is
believed to be intrinsically strong at period t, then a more patient player i is
less aggressive at period t. If player i is not believed to be intrinsically strong
at period t, then a more patient player i is more aggressive.

So, for a (believed to be) strong player, greater patience leads to less
aggressiveness. On the other hand, if a player’s strength is not believed
to be suffi ciently great then higher patience leads to more aggressiveness.
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Thus, perception of strength is critical in conflicts. Even when the relative
strength must be learned, the perception of strength is a key mediator in the
relationship between patience and aggressiveness.
The trade-off between the option value of waiting for both player versus

denying both players this option value delivers the critical insight in Theorem
2. A strong player can afford to wait for better future opportunities because
the opponent is less likely to benefit from them. This holds even if strength
is not known and can only be partially inferred from the histories. It follows
that a more patient, and strong, player has less incentives to conduce a pre-
emptive attack. The opposite occurs for a more patient, but weaker, player
who has greater incentives to preempt the opponent. Since it is impossible
for both players to be relatively strong at the same time our results show the
diffi culties with peaceful arrangements and the additional role of perceived
strength in our game of warfare.
A remarkable quality of Theorem 2 is that rational players account for

the entire stream of future payoffs and not just one-period ahead payoffs (as
myopic players do). Yet, the signs of one-step look ahead expected values i.e.,
E
(
w1
t+1|Ft

)
and E

(
w2
t+1|Ft

)
, suffi ce to determine the connection between

patience and aggressiveness. This relies on an important observation: the
belief about intrinsic strength, µ, is a martingale. Intrinsic strength at period
t is also a martingale. Therefore, the one-step look ahead values suffi ce to
characterize any finite step look-ahead values, i.e. E

(
wit+1|Ft

)
= E

(
wit+k|Ft

)
for any k > 1.
On the methodological side, the key innovation in this section is to

use martingale techniques to connect the single-player work of Quah and
Strulovici (2013) and the existence of equilibrium results in the two-player
work of Ohtsubo (1987). Similar to the fair case, Yasuda (1985) is utilized
to ascertain that there is a unique set of sustainable values (even if mixed
strategies are employed). We restrict attention to the strategies identified
in Ohtsubo (1987). These are not necessarily the only strategies that sup-
port these payoffs, but any other equilibrium strategy also achieves the same
payoffs. These characterized values and strategies are not in closed form,
but they are closely related to Snell (1952) envelopes used in single player
stopping problems. By utilizing martingale techniques we extend the sin-
gle player results of Quah and Strulovici (2013) to order the values without
directly computing them. This permits comparative statics results.
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5 Conclusions and Future Work

5.1 Conclusions

This paper develops novel methods for stopping games with and without the
addition of social experimentation. The results reveal ineffi ciencies produced
by preemptive moves leading to early destructive confrontations. Unlike re-
peated games, this ineffi ciency cannot be alleviated by patience. The results
also show that strength is the key mediator on the relation between pa-
tience and aggressiveness. Destructive confrontations are triggered sooner
by preemptive moves of patient players. The exception to this strategic ag-
gressiveness takes place at the side (if it exists) that is suffi ciently strong and
so, may optimally wait long for a better opportunity to strike.
The reducibility of the process (the game ends when one player starts a

confrontation) makes the underlying logic in this game completely different
from those in repeated games. Unlike folk theorems there is no possible
threat that the players can make in order to sustain different equilibrium
payoffs, no matter how patient players might be. This is the fundamental
reason why there is no folk theorem in this stopping game with destructive
confrontations.

5.2 Future work

A natural follow-up to this model would combine our stopping game and
a repeated game. Like in this model, there would be a pre-stage whether
each player decides, in each period, whether or not to engage the opponent.
However, if so, the game would not end, but instead the players would be
irrevocably engaged in a repeated game. We conjecture that this will reveal
new tensions in the welfare implications of patience. This is left for future
work.
Another natural follow-up to is to explore the case whether initiating

a fight can give a direct advantage or disadvantage. This is an important
question, and existence and uniqueness of values have already been explored
in some settings (usually continuous-time models) within the stopping games
literature (see Dynkin (1969), Neveu (1975), Rosenberg, Solan, and Vieille
(2001), Szajowski (1993), Shmaya and Solan (2004), Ekstrom and Villeneuve
(2006)). However most of these results are focused on existence with involved
characterizations of equilibria. Thus, obtaining comparative statics results
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in this setting is a daunting task. This is left for future work.
A quite different follow-up would be in social experimentation where play-

ers’experimentation are directly payoff relevant to other players, and players
are not necessarily adversaries. This can fit well situations like adopting new
technologies or forming social norms. Our techniques could be utilized to
shed light on these phenomena. This is also left for future work.

6 Appendix

6.1 Uniqueness of Values and Random Stopping Times

6.1.1 Mixed Strategies

In the literature of stopping games, there are three concepts of random
stopping times. Proving the equivalence of these concepts is challenging,
but can be found in Solan, Tsirelson, and Vieille (2012) in the context of
stopping games, in Mertens, Sorin, and Zamir (2015) for a broader class of
extensive form games. For the convenience of the reader, we give a brief
overview of the three definitions. Let {Ft} be a filtration of a given prob-
ability triple (Ω, {Ft},P). Recall that a pure stopping time (strategy) is a
function τ : Ω→ N ∪ {∞} such that {ω ∈ Ω : τ(ω) = n} ∈ Fn for all n.
The concepts of mixtures are as follows:

Definition 7 (Randomized Stopping Time). A randomized stopping time
is a nonnegative adapted real valued process ρ = (ρn)n∈N∪{∞} that satisfies∑

n∈N∪{∞} ρn(ω) = 1 for every ω ∈ Ω.

The interpretation is that when the true state of the world is ω the prob-
ability that the player stops at time n is ρn(ω).

Definition 8 (Behavior Stopping Time). A behavior stopping time is an
adapted [0, 1] valued process π = (πn)n∈N.

The interpretation is that when the true state of the world is ω the prob-
ability that the player stops at time n is πn(ω) conditional on stopping oc-
curring after time n− 1. For brevity we refer to a behavior stopping time as
a behavior strategy.

Definition 9 (Mixed Stopping time). Let I denote the unit interval and
B denote the borel algebra with respect to the Lebesgue measure. A mixed
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stopping time is a (B×F) measurable function µ : I × Ω → N ∪ {∞} such
that for every r ∈ I, the function µ(r, ·) is a stopping time.

The interpretation is that a pure stopping time is chosen according to
the uniform distribution at the beginning and used throughout the stopping
problem.

6.1.2 Uniqueness of Values

We adopt the notion of a randomized strategy from Yasuda (1985) , which
corresponds to behavior stopping times. We are only going to use behavioral
stopping times, but by Solan, Tsirelson, and Vieille (2012) and Mertens,
Sorin, and Zamir (2015) we know that other forms of mixtures are covered.
For completeness, here we reproduce Yasuda (1985)’s result and proof with
a simplified notation to match our setting. The result shows that there is
a single sustainable pair of values in equilibrium. Thus, after this section
we restrict attention to the equilibrium strategies we identify. Any other
equilibrium attains the same values. Interested readers can consult Yasuda
(1985) for broader results.

Definition 10. Let (πin)n∈N = πi be a behavior strategy for player i. That
is πin is a process adapted to Fn, with 0 ≤ πin ≤ 1 for all n. And let xin be an
i.i.d. uniform variable independent of Fn. 5 Then a random stopping time
associated with a behavior strategy πi is defined by

τ(πi) = inf{n ≥ 0 : xin ≤ πin}

The interpretation is that player i’s behavior strategy describes the odds
of stopping, πin, as a function of the past and current history. The random
variable xin serves as an exogenous randomization device that is independent
from the history of the game, and stopping by player i occurs when xin is
less than πin. The definitions are consistent because the probability that x

i
n

is less than πin is equal to π
i
n.
6

5For our purposes, independence from the filtration means that xn is independent from
all random variables adapted to Fn such as the odds of winning or the history of the game.

6The statement of Yasuda’s (1985) theorem uses behavioral strategies and do not re-
quire the equivalent concept of random stopping times associated with a behavioral strat-
egy. However, we make this definition because it is the one Yasuda uses in his proof.
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If πin is equal to 0 or 1 for every possible history, than the random stopping
time associated with the behavior strategy is equivalent to a pure stopping
time.
For each player i = 1, 2, let xin be i.i.d. random variables of uniform

distribution on [0, 1] and independent of the original filtration Fn. Let Gn
be the σ-field generated by Fn, (xin)i∈{1,2}. Consider the pair of behavior
stopping times given by ({π1

n}n∈N, {π2
n}n∈N) = (π1, π2).

Further let Πi
n = {πi : πi1 = πi2 = . . . πin−1 = 0}. That is the set Πi

n

correspond to the set of behavior strategies where player i never starts a
conflict before n.
With some abuse of notation let τ(π1, π2) denote min(τ(π1), τ(π2)), the

time of the conflict.

Observation 1. For any t, and any realization pt, w2
t = v − l − w1

t .

By observation 1 we can write any payoff in period t, in terms of w1
t .

Finally let

γ̄1
n = ess inf

Π2
n

ess sup
Π1
n

E(βτ(π1,π2)−nw1
τ(π1,π2)|Fn) (6.1.1)

γ1

n
= ess sup

Π1
n

ess inf
Π2
n

E(βτ(π1,π2)−nw1
τ(π1,π2)|Fn)

γ̄2
n = ess inf

Π1
n

ess sup
Π2
n

E(βτ(π1,π2)−n(v − l − w1
τ(π1,π2))|Fn)

γ2

n
= ess sup

Π2
n

ess inf
Π1
n

E(βτ(π1,π2)−n(v − l − w1
τ(π1,π2))|Fn)

We now note that, for any pair of equilibrium strategies τ(π1), τ(π2), con-
frontation occurs, almost surely, in finite time. That is, equilibrium payoffs
must be achieved by fighting strategies, so that γ̄in and γ

i
n
, i ∈ {1, 2} are

well-defined bounds.7 To see this, first note that payoffs never exceeds v and
so, continuation payoff has to be less than βv, β < 1. Let p̂1(β) < 1 and
p̂2(β) > 0 be such that p̂1(β)(v+l)−l > βv and−p̂2(β)(v+l)+v > βv. Then,
in equilibrium, player 1 must confront wherever the probability of victory ex-
ceeds p̂1(β), and player 2 must confront wherever the probability of victory

7The essential suprema and the essential suprema are obtained as limits of finite time
payoffs and hence requires stopping times to be almost surely finite.
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exceeds 1−p̂2(β). This follows because in these cases the expected payoffs ob-
tained by immediate confrontation exceeds the maximum discounted payoffs
that can be achieved by not confronting. Thus, in equilibrium, confrontation
occurs either before or at any period t such that pt exceeds p̂1(β) or is below
1− p̂2(β). Now, {p̃t} has full support on [0, 1] and a continuous density. So,
every period, pt exceeds p̂1(β) or is below 1 − p̂2(β) with positive probabil-
ity. Given that {p̃t} is i.i.d., by the Borel-Cantelli lemma, almost surely, pt
exceeds p̂1(β) or is below 1 − p̂2(β). Hence, almost surely, in equilibrium,
confrontation happens in finite time.

We now reproduce the Theorem 3.1 of Yasuda (1985) (and its proof)
adapted to our setting.

Theorem 3 (Yasuda). Assume that

E[sup
n
|win|] <∞, E[sup

n
(win)−] <∞ and E[sup

n
(win)+] <∞, for each i ∈ {1, 2}.

Then for each i, γ̄in and γ
i
n
coincide for all n.

Proof. We reproduce the proof of Yasuda (1985) because we believe the proof
is insightful. The approach taken by Yasuda (1985) is to define a value
operator that every equilibrium value needs to satisfy and show that there
exists a unique set of values that can satisfy this operator. The analysis in our
case is simplified since in our game the payoffs arising from a confrontation
are bounded.The reader may skip it and go directly to corollary 3. However,
the notation in the original representation is challenging. Here we present
the argument in a notation which is (to us) simpler to follow.
First observe that the assumptions in theorem 3 implies:

ess sup
Π1
n+1

E(βτ(π1,π2)−nw1
τ(π1,π2)|Fn) = βE(ess sup

Π1
n+1

E(τ(π1,π2)−nw1
τ(π1,π2)|Fn+1)|Fn)

Now, consider the following two by two game:

Conf No Conf
Conf w1

n, v − l − w1
n w1

n, v − l − w1
n

No Conf w1
n, v − l − w1

n βE(γ1
n+1|Fn), βE(γ2

n+1|Fn)

Let V AL denote the equilibrium values of the bimatrix game. Consider
the functional equation associated with V AL operator,
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(γ1
n, γ

2
n) ∈ V AL

[
w1
n, v − l − w1

n w1
n, v − l − w1

n

w1
n, v − l − w1

n βE(γ1
n+1|Fn), βE(γ2

n+1|Fn)

]
(6.1.2)

Notice that any equilibrium payoffhas to satisfy 6.1.2. Now let, (γ̂1
n, γ̂

2
n) be

a solution to 6.1.2 and π̂1 = (π̂1
n), π̂2 = (π̂2

n) be an associated strategy. That
is for each n

γ̂1
n = (π̂1

nπ̂
2
n + π̂1

n(1− π̂2
n) + π̂2

n(1− π̂1
n))w1

n + β(1− π̂1
n)(1− π̂2

n)E(γ̂1
n+1|Fn)

γ̂2
n = (π̂1

nπ̂
2
n + π̂1

n(1− π̂2
n) + π̂2

n(1− π̂1
n))(v − l − w1

n) + β(1− π̂1
n)(1− π̂2

n)E(γ̂2
n+1|Fn)

Lemma 1. For each n the following equalities hold:

E(βτ(π̂1,π̂2)−nw1
τ(π̂1,π̂2)|Fn) = γ̂1

n

E(βτ(π̂1,π̂2)−n(v − l − w1
τ(π̂1,π̂2))|Fn) = γ̂2

n

Proof of Lemma. For each n

E(βτ(π̂1,π̂2)−nw1
τ(π̂1,π̂2)|Fn)− γ̂1

n

= βm−n+1E

[
[
m∏
k=n

(1− π̂1
k)(1− π̂2

k)](E(βτ(π̂1,π̂2)−m−1w1
τ(π̂1,π̂2)|Fm−1)− γ̂1

m+1)

]

for any m ≥ n. Since β < 1 letting m→∞ we have

E(βτ(π̂1,π̂2)−nw1
τ(π̂1,π̂2)|Fn) = γ̂1

n

and analogously

E(βτ(π̂1,π̂2)−n(v − l − w1
τ(π̂1,π̂2))|Fn) = γ̂2

n

Now, consider a strategy π2,(m) = (π
2,(m)
1 , π

2,(m)
2 , . . .) defined as follows:

for each k

π
2,(m)
k =

{
π̂2
k if k > m
π2
k if k ≤ m
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for an arbitrary strategy π2 = (π2
1, π

2
2, . . .). By lemma 1 it must be that

E(βτ(π̂1,π2,(m))−mw1
τ(π̂1,π2,(m))|Fm) = E(βτ(π̂1,π̂2)−mw1

τ(π̂1,π̂2)|Fm) = E(γ̂1
m+1|Fm).

On the other hand since π̂2 satisfies 6.1.2, it has to be the case that

γ̂1
m ≤ E(βτ(π̂1,π2,(m))−mw1

τ(π̂1,π2,(m))|Fm)

But then iteratively γ̂1
n ≤ E(βτ(π̂1,π2,(m))−nw1

τ(π̂1,π2,(m))
|Fn) for eachm ≥ n.

Since π2 was arbitary letting m→∞ we have

γ̂1
n ≤ ess inf

Π2
n

E(βτ(π̂1,π2)−nw1
τ(π̂1,π2)|Fn) ≤ ess sup

Π1
n

ess inf
Π2
n

E(βτ(π̂1,π2)−nw1
τ(π̂1,π2)|Fn) = γ1

n

Symmetric arguments deliver γ̂1
n ≥ γ̄1

n yielding γ̄
1
n = γ1

n
. An identical

argument also delivers γ̂2
n ≤ γ2

n
and γ̂2

n ≥ γ̄2
n, yielding γ̄

2
n = γ2

n
.

Corollary 3. Our stopping games with behavior strategies has a unique pair
of values that can be sustained in equilibrium.

Proof. The inequalities in Yasuda (1985)’s assumptions hold because for all
n, −l < win < v. Hence, γ̄in = γi

n
, i ∈ {1, 2}. The corollary is now achieved

because any equilibrium payoffs (for player i at period n) given by γ̂1
n and

γ̂2
n must be between γ

i
n
and γ̄in. and thus follows directly from the last line

in Yasuda’s (1985) proof that γ̂in = γ̄in = γi
n
, i ∈ {1, 2}.

Notice that corollary 3 only asserts uniqueness of sustainable equilibrium
values. There are potentially multiple equilibrium strategies that attain these
values.

6.2 Known Strength

6.2.1 Informal Description of the Proof Strategy for Theorem 1

By Yasuda (1985), there is a unique pair of equilibrium values. By Mertens
(2002), we know there exists an equilibrium in behavior Markov strategies.
When both players use a Markovian strategy, the value functions associated
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with any pair of Markovian strategies has a time independent structure due
to the i.i.d. odds of victories. We use the i.i.d. distributions (on the odds
of victory) to show that, in our setting, any equilibrium in behavior Markov
strategies is an equilibrium in hitting strategies with a fixed threshold. Thus,
there exists an equilibrium in hitting strategies with fixed thresholds. The
computation of the (equilibrium) threshold is straightforward. While these
computations only characterizes a particular equilibrium that Mertens (2002)
has shown to exist, the equilibrium payoffs that it delivers are the only ones
in this game as shown by Yasuda (1985).

6.2.2 Proof of Theorem 1

Step 1: Equilibria in Markovian strategies

Definition 11. A behavior Markovian strategy, is a behavior stopping time,
where (πn|Fn) ≡ (πn|pn).

The interpretation of a behavior Markovian strategy is that when the
true state of the world is ω the probability that the player stops at time n
is πn(ω) conditional on stopping occurring after time n − 1, only depends
on the nth coordinate of ω. That is, the probability that the player stops at
time n conditional on stopping occurring after time n − 1, only depends on
the realization pn.
Note that a behavior Markovian strategy defines a mapping πi : [0, 1]→

[0, 1], where if, at period n, the odds of victory is pn and no confrontation
has occurred until period n, then player i stops at period n with probability
πi(pn). Thus, given that {p̃n} is i.i.d., the following observation holds.

Observation 2. When both players employ behavior Markovian strategies,
the probability of a confrontation happening at period t + 1, conditional on
stopping occurring after time t does not depend on the history before and at
period t and therefore this probability is a number (denoted χ) given by:

χ = P (τ i ∧ τ j = t+ 1|Ft)

=

∫ 1

0

[πi(p)πj(p) + πi(p)(1− πj(p)) + (1− πi(p))πj(p)]dp
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Observation 3. When both players employ behavior Markovian strategies,
expected payoff from a confrontation at period t+ 1, conditional on stopping
occurring after time t, are also independent of history until period t, including
the realization at period t therefore these payoffs are numbers (denoted ξ1 and
ξ2) given by:

ξ1 =

∫ 1

0

{p[πi(p)πj(p) + πi(p)(1− πj(p)) + (1− πi(p))πj(p)](v + l)− l}dp

ξ2 =

∫ 1

0

{−p[πi(p)πj(p) + πi(p)(1− πj(p)) + (1− πi(p))πj(p)](v + l) + v}dp

Observation 4. When both players employ behavior Markovian strategies,
expected continuation payoffs denoted by E(V i(τ(πi), τ(πj))|Ft) are also in-
dependent of history until period t, including the realization at period t and
is given by:

E(V i(τ(πi), τ(πj))|Ft) =
∞∑
k=0

βk [1− χ]k
(
ξi
)

=
ξi

1− β [1− χ]

Definition 12. A pure strategy τ i is called a hitting strategy, if ∃Ci ⊆ [0, 1]
such that

τ i = inf{t ≥ 0|pt ∈ Ci}

That is player i stops the first time the realization pt of the process p̃t
belongs to Ci. The Ci is fixed for all periods t. If C is of the form [k, 1] or
[0, k] we call it a hitting strategy with fixed threshold k. By definition hitting
strategies are Markovian.

Definition 13. The best response of player i against player j’s random
stopping time associated with a behavior strategy τ(πj) denoted by bi(τ(πj))
= (bin(τ(πj)))n∈N is a behavior stopping time that satisfies:

bin(τ(πj)) ∈ arg max
Πi

E(βτ(bi(τ j))∧τ j−nwiτ(bi(τ j))∧τ j |Fn)

That is, bi(τ(πj)) is a behavior stopping time of player i that is a best
response to a (potentially behavior) stopping time τ(πj) of player j.
Lemma 2 holds in our stopping game with an i.i.d. uniform process {p̃t}.
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Lemma 2. In equilibrium if both players employ a behavior Markov strategy,
then both players must be employing a hitting strategy with a fixed threshold.

Proof. Suppose there exists an equilibrium in behavior Markovian strate-
gies. Let τ(πj) be a randomized stopping time associated with a behavior
Markovian strategy and let bit(τ(πj)) be a best response to τ(πj) that is a
behavior Markovian strategy. Let V i(bi(τ(πj)), τ(πj)) denote the continua-
tion payoff for player i when player i employs the best response bi(τ(πj))
and player j employs τ(πj). Since both players employ strategies that are
Markovian, due to observation 4 it must be the case that for any period t,
E(V i(bi(τ(πj)), τ(πj))|Ft) is a constant real number. That is ∃vi(bi(τ(πj)), τ(πj)) ∈
[−l, v] such that E(V i(bi(τ(πj)), τ(πj)j)|Ft) = vi(bi(τ(πj)), τ(πj)) for all t.
But then for any period t and any realization wit, the problem of player i is
as follows:

max
bit(τ(πj))∈[0,1]

[(1−bit(τ(πj)))βvi(bi(τ(πj)), τ(πj))+bit(τ(πj))wit](1−P(τ(πj) = t))

+[P(τ(πj) = t)E(wit|τ(πj) = t)].

Since vi(τ i(τ(πj)), τ(πj)) is bounded above and below by respectively v and
−l there exists a unique p̄i such that βvi(bi(τ(πj)), τ(πj)) = w̄it. Thus, wlog
letting player i be player 1.

arg max
b1t (τ(π2))∈[0,1]

[(1−b1
t (τ(π2)))βv1(b1(τ(π2)), τ(π2))+b1

t (τ(π2))(ptv−(1−pt)l)] =


1 if pt > p̄1

0 if pt < p̄1

[0, 1] if pt = p̄1

But then τ 1 = t ⇐⇒ pt > p̄1 thus the best response to a behavior Markov
strategy is a hitting strategy with a fixed threshold, with a measure 0 indif-
ference in p̄1, which we break in favor of a confrontation. Given that hitting
strategies with a fixed thresholds are Markovian, there exists an equilibrium
in hitting strategies with fixed thresholds.

In step 2, we now identify an equilibrium in hitting strategies with fixed
thresholds.
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Step 2: Identifying an equilibrium in hitting strategies
Let τ 1 = inf{t ≥ 0 | pt ≥ p1} and τ 2 = inf{t ≥ 0 | pt ≤ p2} denote two

hitting strategies, where without loss of generality we assume p1 ≥ 1/2 and
p2 ≤ 1/2.

Letting F (p) and f(p) denote the cdf and pdf of the i.i.d. stochastic
process governing the odds. Now we start with any i.i.d. distribution and
we will plug the uniform density as we proceed.
With hitting strategies the overall payoffs to the players are given by:

U1(τ) =
∞∑
t=0

βtP(τ 1 ∧ τ 2 = t)E(p̃t(v + l)− l|τ 1 ∧ τ 2 = t)

=
∞∑
t=0

βt(F (p1)− F (p2))t

(∫ p2

0

[p(v + l)− l]f(p)dp+

∫ 1

p1
[p(v + l)− l]f(p)dp

)
,

U2(τ) =
∞∑
t=0

βtP(τ 1 ∧ τ 2 = t)E(−p̃t(v + l) + v|τ 1 ∧ τ 2 = t)

=
∞∑
t=0

βt(F (p1)− F (p2))t

(∫ p2

0

[−p(v + l) + v]f(p)dp+

∫ 1

p1
[−p(v + l) + v]f(p)dp

)
.

In particular, for any history, the continuation payoffs with hitting strate-
gies denoted E(V i(τ)|Ft) are also given by:

E(V 1(τ)|Ft) =
∞∑
k=t

βk−tP(τ 1 ∧ τ 2 = k|Ft)E(p̃t(v + l)− l|τ 1 ∧ τ 2 = k|Ft)

=
∞∑
k=t

βk−t(F (p1)− F (p2))t

(∫ p2

0

[p(v + l)− l]f(p)dp+

∫ 1

p1
[p(v + l)− l]f(p)dp

)
,

E(V 2(τ)|Ft) =

∞∑
k=t

βk−tP(τ 1 ∧ τ 2 = k|Ft)E(−p̃t(v + l) + v|τ 1 ∧ τ 2 = k|Ft)

=
∞∑
k=t

βk−t(F (p1)− F (p2))t

(∫ p2

0

[−p(v + l) + v]f(p)dp+

∫ 1

p1
[−p(v + l) + v]f(p)dp

)
.

The underlying process is i.i.d. and the strategies are hitting strategies.
Therefore the continuation payoffs are constant across time (including period
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0) and independent of history. Hence with a slight abuse of notation we let
E(V i(τ)) = U i(τ) = E(V i(τ)|Ft) for any t denote the continuation values.
Furthermore since the hitting strategies are identified by two thresholds,
we will simplify the notation by using notions of strategy and threshold
interchangeably.
For a pair of thresholds (p1, p2) that belongs (0.5, 1) × (0, 0.5) to be an

equilibrium the thresholds must satisfy the following system of 6 equations:

βE(V 1(τ)) = (p1v − (1− p1)l) (6.2.1)

βE(V 2(τ)) = (−p2l + (1− p2)v)

E(V 1(τ)) =

∫ p2

0
[p(v + l)− l]f(p)dp+

∫ 1

p1
[p(v + l)− l]f(p)dp+ P(p2 < p < p1)βE(V 1(τ))

E(V 2(τ)) =

∫ p2

0
[−p(v + l) + v]f(p)dp+

∫ 1

p1
[−p(v + l) + v]f(p)dp+ P(p2 < p < p1)βE(V 2(τ))

E(V 1(τ)) ≥
∫ 1

0
[p(v + l)]f(p)dp− l

E(V 2(τ)) ≥
∫ 1

0
[−p(v + l)]f(p)dp+ v

The first two equations show that at the threshold the players have to
be indifferent between confrontation and not. The third and the fourth
equations deliver the continuation values. The last two inequalities ensures
that the payoffs associated with the thresholds have to be higher than ex-ante
immediate confrontation.
The system of equations 6.2.1 can be re-written as follows:

28



βE(V 1(τ)) = (p1v − (1− p1)l)

βE(V 2(τ)) = (−p2l + (1− p2)v)

E(V 1(τ)) =

∫ p2

0

[p(v + l)]f(p)dp+

∫ 1

p1
[p(v + l)]f(p)dp+ p1(v + l)

∫ p1

p2
f(p)dp− l

E(V 2(τ)) =

∫ p2

0

[−p(v + l)]f(p)dp+

∫ 1

p1
[−p(v + l)]f(p)dp− p2(v + l)

∫ p1

p2
f(p)dp+ v

E(V 1(τ)) ≥
∫ 1

0

[p(v + l)]f(p)dp− l

E(V 2(τ)) ≥
∫ 1

0

[−p(v + l)]f(p)dp+ v

So now we solve for E(V 1(τ)) and E(V 2(τ)) by combining the third and
the fourth equation with the first and the second equations.

(p1v − (1− p1)l)

β
=

∫ p2

0

[p(v + l)− l]f(p)dp+∫ 1

p1
[p(v + l)− l]f(p)dp+ (p1v − (1− p1)l)

∫ p1

p2
f(p)dp

(−p2l + (1− p2)v)

β
=

∫ p2

0

[−p(v + l) + v]f(p)dp+∫ 1

p1
[−p(v + l) + v]f(p)dp+ (−p2l + (1− p2)v)

∫ p1

p2
f(p)dp

Letting φ(p1, p2) = F (p1)−F (p2) i.e. the total probability of no conflict,
we have the following:∫ p2

0

[p(v + l)]f(p)dp+

∫ 1

p1
[p(v + l)]f(p)dp =

(p1(v + l)− l)
β

− (p1(v + l))φ(p1, p2) + l∫ p2

0

[p(v + l)]f(p)dp+

∫ 1

p1
[p(v + l)]f(p)dp =

(p2(v + l)− v)

β
− (p2(v + l))φ(p1, p2) + v

The system above is a necessary condition for equilibria with general i.i.d.
distributions. We now plug in the uniform density to the system, i.e. f(p) = 1
and F (p) = p. With some algebra, the solution is
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p̄1 =
1

2
+

1

4β
−

√
(l + v)

(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
4β(l + v)

(6.2.2)

p̄2 =
1

2
− 1

4β
+

√
(l + v)

(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
4β(l + v)

Finally, we now verify the inequalities in the fifth and sixth equations.
They hold given that v < l and β < 1. This follows because

E(V 1(τ̄)) =
−l(1− p̄1 + p̄2) + (v+l

2
)[(p̄2)2 + 1− (p̄1)2]

1− β(p̄1 − p̄2)

=
(v−l

2
)[1− 2( 1

4β
−

√
(l+v)(l+v−4lβ+4vβ+4lβ2−4vβ2)

4β(l+v)
)]

1− β2( 1
4β
−

√
(l+v)(l+v−4lβ+4vβ+4lβ2−4vβ2)

4β(l+v)
)

>
v − l

2
.

The inequality on the sixth equation (which refers to E(V 2(τ̄))) also holds
and the calculation is completely analogous.

Proof of Corollary 1

Taking the derivative of p1 in 6.2.2 with respect to β and simplifying yields

∂p1

∂β
=
−2lβ + 2vβ + l + v −

√
(l + v)

(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
4β2
√

(l + v)
(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
We now show that the derivative is negative whenever v ≤ l.
To see that the numerator is negative:

−2lβ + 2vβ + l + v ≤
√

(l + v)
(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

)
or

(−2lβ + 2vβ + l + v)2 ≤
(√

(l + v)
(
l + v − 4lβ + 4vβ + 4lβ2 − 4vβ2

))2

Which simplifies to:

8β2v(v − l) ≤ 0 or

v ≤ l

30



Proof of Corollary 2
Now, we will see the effect of changing just one player’s discount factor

when initially they start from the same β. Here we consider small changes
around the initial equilibrium we found. Using the first and third equations in
6.2.1 we construct f1(p1, p2, β1, β2) and using the second and fourth equations
we construct f2(p1, p2, β1, β2) as follows:

f1(p1, p2, β1, β2) = β1

(∫ p2

0

[p(v + l)]dp+

∫ 1

p1
[p(v + l)]dp+ p1(v + l)(p1 − p2)− l

)
− (p1v − (1− p1)l)

f2(p1, p2, β1, β2) = β2

(∫ p2

0

[p(v + l)]dp+

∫ 1

p1
[p(v + l)]dp+ p2(v + l)(p1 − p2)− v

)
− (p2l − (1− p2)v)

It is straightforward to see that if β1 = β2 = β then setting p̄1 = p̄1(β1, β2)
and p̄2 = p̄2(β1, β2) we have both f1 and f2 equal to zero. That is,

f1(p̄1, p̄2, β, β) = 0 and f2(p̄1, p̄2, β, β) = 0.

With some algebra, the Jacobian can be explicitly computed and shown
to be non-singular. Hence, we can use the implicit function theorem on the
system of two equations above. Let p̄(β, β) denote the vector of thresholds
(p̄1(β, β), p̄2(β, β)) where both discount factors are equal to β. By the implicit
function theorem,

Dβ p̄(β, β) =
−1

−β2(v + l)2(p̄1(β, β)− p̄2(β, β)))2 + (v + l)2
×(

β(v + l)(p̄1(β, β)− p̄2(β, β))− (v + l) −β(v + l)(p̄1(β, β)− p̄2(β, β))
−β(v + l)(p̄1(β, β)− p̄2(β, β)) β(v + l)(p̄1(β, β)− p̄2(β, β))− (v + l)

)
×(

d11 0
0 d22

)
Where

d11 =

∫ p̄2(β,β)

0

[p(v+l)]dp+

∫ 1

p̄1(β,β)

[p(v+l)]dp+p̄1(β, β)(v+l)(p̄1(β, β)−p̄2(β, β))−l
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and

d22 =

∫ p̄2(β,β)

0

[p(v+l)]dp+

∫ 1

p̄1(β,β)

[p(v+l)]dp+p̄2(β, β)(v+l)(p̄1(β, β)−p̄2(β, β))−v

Plugging in the values of p̄1(β, β) and p̄2(β, β) from 6.2.2, we can precisely
calculate the partial derivatives. In particular the signs of the partial deriv-
atives are as follows. (

∂p̄1

∂β1
∂p̄1

∂β2

∂p̄2

∂β1
∂p̄2

∂β2

)
=

(
− +
− +

)
The proof is now concluded because an increase in p̄1 is corresponds to a de-
crease in aggressiveness whereas an increase in p̄2 corresponds to an increase.

6.2.3 Informal Description of the Proof Strategy for Theorem 2

The proof of this theorem is in three steps. By Yasuda (1985), there is a
unique set of equilibrium values. We then use a characterization of equilib-
rium values, due to (Ohtsubo 1987). The second step identifies martingale
properties of equilibrium values. The final step utilizes a lemma (lemma
3) along with martingale properties in step 2 to obtain an ordering of stop-
ping times (i.e., the comparative statics relating aggressiveness and strength).
Similar to the i.i.d. case, the equilibrium values are unique, but there are
potentially multiple equilibrium strategies that sustain these values.

6.2.4 Proof of Theorem 2

Step 1: Characterization of continuation values
The wit in definition 2.4 is crucial to identify and characterize an equilib-

rium. In that direction for eachm ∈ N, let the following sequences of random
variables {(ψmn , φmn )}mn=0 be defined by backward induction in the following
manner:

(ψmm, φ
m
m) = (w1

m, w
2
m)

(ψmn , φ
m
n ) =

{
(w1

n, w
2
n) if (w1

n, w
2
n) ≥ (βE

(
ψmn+1|µn

)
, βE

(
φmn+1|µn

)
)

(βE
(
ψmn+1|µn

)
, βE

(
φmn+1|µn

)
) o/w
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This construction is very similar to the construction of a Snell envelope,
extended to accommodate 2 players. Here let us remind that the Snell en-
velope is the value of a discounted optimal stopping problem with a single
decision maker. Hence, it is the smallest supermartingale majorant of the
discounted process that is being stopped optimally. The calculation of the
Snell envelope relies on a similar backward induction argument, where first
the stopping problem is assumed to stop at an arbitrary time (m in the above
construction) and then the values for any n < m is calculated by taking the
maximum of the current stopped value and the expected continuation pay-
off. Finally the envelope is identified as the limit of the values as m tends to
infinity. Further details and properties of the construction can be found in
Snell (1952). There is a crucial observation to be made here. Both the Snell
envelope and the construction of Ohtsubo (1987) is the limit of a process
that is eventually stopped. The main implication is that these constructions
rely on stopping (confrontation) happening almost surely, which is true in
our case due to confrontations being destructive.
It is shown in Ohtsubo (1987) that ψn = limm→∞ ψ

m
n and φn = limm→∞ φ

m
n

are well defined. Similar to the Snell envelope, the P-limit of these sequences
define the essential suprema, which was shown to be equal to the equilibrium
payoffs in the stopping game of (Ohtsubo 1987).
So, Ohtsubo (1987) characterizes a pair of equilibrium values using back-

ward induction, and shows associated stopping times that attain these values.
Here we present Ohtsubo (1987) theorem without proof.

Theorem 4 (Ohtsubo).

τ̄ 1 = inf{k ≥ 0|βE
(
ψk+1|µk

)
≤ w1

k} (6.2.3)

τ̄ 2 = inf{k ≥ 0|βE
(
φk+1|µk

)
≤ w2

k} (6.2.4)

constitute an equilibrium of this game. Where, the sequences {ψ}, {φ} cor-
respond to the associated equilibrium values which are given by,

ψt = ess sup
τ1
E
(
β τ̄

2∧τ1w1
τ̄2∧τ1|µt

)
φt = ess sup

τ2
E
(
βτ

2∧τ̄1w2
τ2∧τ̄1|µt

)
E(V 1(τ)|Ft) = ψt = E

(
β τ̄

1∧τ̄2w1
τ̄1∧τ̄2|µt

)
E(V 2(τ)|Ft) = φt = E

(
β τ̄

1∧τ̄2w2
τ̄1∧τ̄2|µt

)
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Ohtsubo (1987) shows that (τ̄ 1, τ̄ 2) is an equilibrium. Here as is usual with
Snell envelopes, a closed form characterization of the equilibrium strategies
is not obtained. However, we can still obtain comparative statics results.
The next proposition characterizes the optimal continuation condition for

equilibrium strategies in Ohtsubo (1987).

Proposition 1. For an arbitrary belief µn and current probability pn the
following inequalities have to hold simultaneously for the game to continue
to period n+ 18

vpn + (1− pn)l ≤ β
(
E
(
ψn+1|µn

))
−pnl + (1− pn)v ≤ β

(
E
(
φn+1|µn

))
The continuation condition in proposition 1 does not involve any discount

factors on the left hand side. Thus pinning down how the right hand side
changes with respect to the discount factor is crucial for the desired com-
parative statics results. The next step highlights the martingale properties
associated with the continuation values (seen in the right-hand side of the
equation above). This simplifies the problem of obtaining comparative statics
results.

Step 2: Martingale properties

Corollary 4. wim is a martingale with respect to µm−1. That is, E(wim|µm−1) =
E(wim+k|µm−1) for any k ∈ N .

Proof. Let us directly calculate E
(
wim|µm−1

)
. Utilizing the fact that f 1(p) =

8breaking indifference in favor of conflict
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f 2(1− p),

E
(
w1
m|µm−1

)
=(v + l)

∫ 1

0

p(f 1(p)µm−1 + f 2(p)(1− µm−1))dp− l

=(v + l)

[
µm−1

∫ 1/2

0

pf 1(p) + (1− p)f 2(p)dp

+(1− µm−1)

∫ 1/2

0

(1− p)f 1(p) + pf 2(p)dp

]
− l

=µm−1

[
(v + l)

∫ 1/2

0

(f 1(p)(2p− 1) + f 2(p)(1− 2p))dp

]

+ (v + l)

∫ 1/2

0

((1− p)f 1(p) + pf 2(p))dp− l.

by a similar calculation we have

E
(
w2
m|µm−1

)
= −µm−1

[
(v + l)

∫ 1/2

0

(f 1(p)(2p− 1) + f 2(p)(1− 2p))dp

]

−(v + l)

∫ 1/2

0

((1− p)f 1(p) + pf 2(p))dp+ v.

It is well established that, the belief µt is a martingale, and consequently
wit are martingales w.r.t to µt since they are just linear functions of µt.
Now, we observe that given the other player’s strategy, the problem of a
player is to maximize a stopped martingale, which is again a martingale by
(Williams 1991).

Step 3: Ordering of stopping times

Notice that the strategies identified by Ohtsubo (1987) are Markovian
(where the state space is the space of beliefs). This follows because the
strategies in 6.2.3 and 6.2.4 only depend on the current belief µn and the
current odds of winning pn.Thus, wlog (see (Puterman 2014)) for any given
belief, we can rescale time and only consider time 0. Given the other player’s
strategy, and looking at the time 0 problem, we can rewrite the continuation
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values in incremental form (in the Lebesgue-Stieltjes sense) as follows,

φ0 = ess sup
τ1
E

(
τ1∑
0

βt(∆w1
t ) + w1

t (∆β
t)|µ0, τ

2

)

ψ0 = ess sup
τ2
E

(
τ2∑
0

βt(∆w2
t ) + w2

t (∆β
t)|µ0, τ

1

)

where ∆wit = w
i
t+1 − wit, and ∆βt = β

t+1 − βt. The incremental form is
convenient because with it, we can utilize the following lemma due to Quah
and Strulovici (2013).

Lemma 3 (Strulovici & Quah). Let H be a regular stochastic process of
bounded variation such that E[Ht] ≤ E[Ht̄] for all t ∈ [0, t̄), and let γ be a
positive regular deterministic process. Then,

E

[∫ t̄

0

γsdHs

]
≥ γ(0)E[H(t̄)−H(0)].9

Using the lemma 3 with β ≤ β̂ we get the following inequalities. First,
letting γ = β

β̂
and dH = β̂(∆w1

t + wt∆β̂
t
) yields:

E

[
t̄∑
0

βt∆w1
t + w1

t (∆β̂
t
)|µ0

]
≥ β

β̂
E

[
t̄∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0

]
. (6.2.5)

Similarly letting γ = β̂
β
and dH = β(∆w1

t + wt∆β
t)

E

[
t̄∑
0

β̂
t
∆w1

t + w1
t (∆β

t)|µ0

]
≥ β̂

β
E

[
t̄∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

]
. (6.2.6)

Given that β ≤ β̂, ∆β̂
t ≥ ∆βt ∀t. So we have the following;

9The proof is identical to theirs, the change in assumptions only allow us to use inte-
gration by parts without assuming γ is increasing.

36



If E[wt+1|µt] ≥ 0 then using inequality 6.2.6, we replace ∆βt in the left

hand side with ∆β̂
t
to get

E

τ1(β)∧τ2(β)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0

 ≥ β̂

β
E

τ1(β)∧τ2(β)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ 0.

The positivity in our last inequality is due to a result by (Williams 1991).It
shows that if a martingale has positive expectation then the discounted ver-
sion of the same martingale also has positive expectation. Since the expres-
sions above are all positive and β̂

β
≥ 1, it follows that the inequalities below

hold.

E

τ1(β)∧τ2(β)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0

 ≥ E

τ1(β)∧τ2(β)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ 0.

If E[wt+1|µt] ≤ 0 using inequality 6.2.5, we replace ∆β̂
t
in the left hand

side with ∆βt to get

0 ≥ E

τ1(β)∧τ2(β)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ β

β̂
E

τ1(β)∧τ2(β)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0


Due to negativity we can just remove β

β̂
and the order will still remain the

same. In a similar manner we have,

0 ≥ E

τ1(β)∧τ2(β)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ E

τ1(β)∧τ2(β)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0


Since the sums consist of martingales and martingale difference sequences,

the inequalities above still hold even if we change the stopping rule for the
second player. In particular, the inequalities above hold if we replace τ 2(β)
with t, for any t. So, we also have:
If E[wt+1|µt] ≥ 0 then
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E

τ1(β)∧τ2(β̂)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0

 ≥ E

τ1(β)∧τ2(β̂)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ 0

Analogously, if E[wt+1|µt] ≤ 0

0 ≥ E

τ1(β)∧τ2(β̂)∑
0

βt∆w1
t + w1

t (∆β
t)|µ0

 ≥ E

τ1(β)∧τ2(β̂)∑
0

β̂
t
∆w1

t + w1
t (∆β̂

t
)|µ0


The next step is to show that, almost surely, the stopping times are

ordered in the same manner, i.e. τ i(β̂) ≥ τ i(β) if E[wit+1|µt] ≥ 0 and τ i(β̂) ≤
τ i(β) if E[wit+1|µt] ≤ 0.
For a contradiction suppose Ψ = {ω : τ 1(β) ≥ τ 1(β̂), E[wt+1|µt] ≥ 0}

has strictly positive probability. Hence, unless the other player fights with
certainty, by a similar calculation as above, we get

E

τ1(β)∑
τ1(β̂)

(β̂
t
∆w1

t + w1
t (∆β̂

t
))I(Ψ)|µt, τ 2(β)


≥ β̂
β
E

τ1(β)∑
τ1(β̂)

(βt∆w1
t + w1

t (∆β
t))I(Ψ)|µt, τ 2(β)


Now, since τ 1(β) was optimal for discount factor β, the right hand side

has to be weakly positive. So, the inequalities above still hold if we change
the stopping rule for the second player. Hence, dropping β̂

β
yields

E

τ1(β)∑
τ1(β̂)

(β̂
t
∆w1

t + w1
t (∆β̂

t
))I(Ψ)|µt, τ 2(β̂)


≥ E

τ1(β)∑
τ1(β̂)

(βt∆w1
t + w1

t (∆β
t))I(Ψ)|µt, τ 2(β̂)

 ≥ 0
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But then, waiting for τ 1(β) is weakly better off on Ψ. So, the stopping rule
defined as max{τ 1(β), τ 1(β̂)} dominates τ 1(β̂) contradicting its optimality.

Similarly for a contradiction suppose Φ = {ω : τ(β) ≤ τ(β̂), E[wt+1|µt] ≤
0} has strictly positive probability. By an identical argument we are going
to get

E

τ(β̂)∑
τ(β)

(βt∆w1
t + w1

t (∆β
t))I(Φ)|µt, τ 2(β)


≥β
β̂
E

τ(β̂)∑
τ(β)

(βt∆w1
t + w1

t (∆β̂
t
))I(Φ)|µt, τ 2(β)


Now, since τ 1(β) was optimal for β, the left hand side has to be weakly
negative but then by changing the stopping rule and dropping β

β̂
, we have

0 ≥ E

τ(β̂)∑
τ(β)

(βt∆w1
t + w1

t (∆β
t))I(Φ)|µt, τ 2(β̂)


≥ E

τ(β̂)∑
τ(β)

(βt∆w1
t + w1

t (∆β̂
t
))I(Φ)|µt, τ 2(β̂)


But then, stopping earlier at τ 1(β) is weakly better off on Φ, so the stopping
rule defined as min{τ 1(β), τ 1(β̂)} dominates τ 1(β̂) contradicting its optimal-
ity.
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