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1 Introduction

Dynamic contracting explores how two parties can use inter-temporal incentives to mitigate

agency frictions. Most existing contracting models assume that inter-temporal preferences

take the special form of exponential discounting because of its technical conveniences, such as

dynamic consistency and stationarity. However, there is extensive evidence – both anecdotal

and empirical – that “time preferences can be non-exponential” (Laibson, 1997). Labora-

tory and field studies find that discount rates are much greater in the short-run than in the

long-run (Harris and Laibson, 2012). When a group of decision makers (such as a board of

directors, team, or committee of experts) follow unanimous decisions, they can collectively

exhibit non-exponential, present-biased behaviors even when each individual follows expo-

nential discounting (Jackson and Yariv, 2015). Therefore, it is natural to ask: how would

dynamic contracting be different with non-exponential discounting?

This paper aims to provide a general framework to answer this question. We begin with a

standard continuous-time dynamic moral hazard model in which a principal hires an agent to

manage a project over a finite horizon. The project’s outcome is noisy, and the agent controls

its drift with private actions. We include three critical elements in this general framework:

first, we allow the principal and the agent to have different, generic, time-varying, and non-

exponential discount functions. Second, the principal and the agent are fully rational and

sophisticated: they make decisions knowing exactly how their future preferences will change

due to non-exponential discounting. Third, renegotiation is allowed as long as both parties

can agree on the proposed change of terms. An example of this setting is the contracting

between a CEO and a board of directors. At the onset of their relationship, the two parties

consent to a long-term contract that provides the CEO with incentives to exert the effort

that is beneficial to the firm. At any point in time, the board can renegotiate by offering

a new contract that replaces the old one if the CEO agrees. If the CEO disagrees, the old

contract stays in place, and the same protocol applies to any future possible renegotiation.

The importance of considering sophisticated contracting parties and renegotiation stems

from the fact that non-exponential discounting generates dynamic inconsistency : a contract

that appears “optimal” to the board or the manager given their current preferences may

appear sub-optimal in the future, not because of any inefficient punishments or constraints,

but simply due to changes in their discounting. If either the manager or the board is naive,

or if renegotiation is not allowed, then one party may regret having previously agreed to

the contracting terms at some point, calling into question whether the previously agreed-

on contract was actually “optimal”. Instead, we assume that both contracting parties are

sophisticated and the contract can be renegotiated, and we provide an intuitive definition for
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a renegotiation-proof, incentive-compatible, optimal long-term contract under such a setting.

In particular, the dynamic contracting relationship can be formulated as an inter- and intra-

personal game, in which each player is a time-t self of the principal or the agent and the

optimal, renegotiation-proof contract corresponds to an appropriately defined equilibrium of

the game. By exploiting the link between dynamic contracting and static non-atomic games,

we formally characterize the optimal, renegotiation-proof contract and prove its existence

under fairly general conditions.

Our first finding is that under our framework, the dynamic inconsistency on the agent’s

side turns out to have much less impact than a time-inconsistent principal does. Despite the

fact that the agent is also playing an intra-personal game with his future selves, his incentive

compatibility condition is characterized by a local pay-performance sensitivity similar to that

in time-consistent benchmarks (e.g., Sannikov, 2008). The principal only needs to provide

incentives for the current agent and not his future selves. This provides a much-needed

simplification, allowing us to take the promised equilibrium value to the agent as a state

variable and focus on the effect of dynamic inconsistency on the principal’s side.

With the agent’s problem solved, we present our main theorem characterizing the incentive-

compatible, renegotiation-proof, optimal long-term contract with as broad a generality as

possible. The theorem includes two innovations. First, we demonstrate how to characterize

the optimal contract using recursive techniques when the usual tool of Bellman equation is

no longer applicable. We argue that given the agent’s local incentive compatibility and our

notion of renegotiation-proofness, the optimal contract is equivalent to the equilibrium of a

simpler auxiliary game in which each t-self of the principal can only influence the agent’s

action, consumption, and the evolution of continuation utility at time t. The recursive

characterization yields an extended Hamilton-Jacobi-Bellman (HJB) system with additional

terms compared to the usual HJB equation for time-consistent benchmarks. These addi-

tional terms capture the equilibrium incentives of the principal, who takes into account the

impact of the contract policies on the payoff for all her future selves.

The second innovation of our main theorem is the proof that such an optimal contract

exists. This is known to be a thorny problem because the well-posedness of the extended

HJB system is not well understood even in the mathematical literature.1 We prove that

such a system must have a solution by exploiting the unique connection between partial

differential equations and static non-atomic games of incomplete information. This novel

connection enables us to utilize known existence results in non-atomic games to establish

1Harris and Laibson (2012) and Bernheim, Ray, and Yeltekin (2015) show the existence of solutions for
special cases only. Björk, Khapko, and Murgoci (2017) and Yong (2012) propose the extended HJB systems
for more general cases but leave the crucial question of existence open and provide only a partial verification
theorem.
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the existence of a solution to our extended HJB system. We also show that any equilibrium

of the principal’s auxiliary game must also be a contract that solves the extended HJB

system. That is, our characterization of the optimal contract is complete. The generality of

our framework opens the door for a broad range of applications.

We demonstrate the applicability of our general framework by solving a more specific

class of contracting problems. For simplicity, we assume the agent has constant-absolute-

risk-aversion (CARA) utility and exponential discounting, and the set of discount functions

of the principal belongs to a time-difference family : i.e., the discount factor between any

two dates t, s is only a function of their difference s − t. This applies to some of the most

commonly-studied examples of non-exponential discounting in economics, such as hyper-

bolic discounting and anticipatory utility. Importantly, we are able to obtain closed-form

solutions for this class of simplified problems and highlight the specific effects brought by

non-exponential discounting (on the principal’s side). In particular, we illustrate a “dead-

line” effect and the resulting non-monotonic paths of equilibrium actions and incentives

under quasi-hyperbolic discounting (as in Harris and Laibson, 2012).2 We also demonstrate

how these theoretical predictions can help reconcile the observed managerial compensation

practices, such as the incentive power of the CEOs as they approach retirement.

Literature Review: This paper is broadly related to several strands of research. First, it

belongs to the thriving literature of continuous-time dynamic contracting. Benchmark mod-

els with time-consistent preferences such as DeMarzo and Sannikov (2006), Biais, Mariotti,

Plantin, and Rochet (2007), and Sannikov (2008) demonstrate the analytical convenience of

a continuous-time formulation, which allows the derivation of economic insights from prob-

lems that are otherwise challenging to solve in discrete time.3 Our paper differs in that

we explicitly model dynamic inconsistency from non-exponential discounting for both the

principal and the agent. Moreover, dynamic inconsistency necessitates a formal discussion

of contract renegotiation, which is often ruled out or assumed away in benchmark models

that assume full commitment power for the principal.

Our definition and analysis of renegotiation are related to both contract renegotiation

2More specifically, we show that under the optimal contract, the equilibrium paths of actions and contract
incentives are monotonic if the principal is time-consistent or if the contracting horizon is infinite. However,
if the principal has quasi-hyperbolic discounting and the contract horizon is finite, the equilibrium paths of
actions and incentives will display a reversal near the end of the contracting horizon.

3The power of continuous-time tools has been demonstrated in other problems. For instance, Faingold
and Sannikov (2011) analyze a continuous-time reputation model and are able to prove the uniqueness of
the equilibrium. Georgiadis (2014) demonstrates the tractability of continuous-time tools in delivering sharp
comparative statics in public good contribution games – an intractable problem in discrete-time. Cisternas
(2018) expands the linear career concerns model of Holmström (1999) to a general non-linear setup in
continuous-time. Recently, Kolb and Madsen (2019) show that a continuous-time setting enables a tractable
analysis of both multiple actions and imperfect monitoring in information design problems.
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in dynamic moral hazard problems as well as equilibrium renegotiation in dynamic games.

In particular, we adopt the same procedure of renegotiation as that considered in Watson,

Miller, and Olsen (2019): once a renegotiation is proposed, if that proposal is rejected,

the previous contract remains in place. The setting of Watson, Miller, and Olsen (2019)

is a more general principal-agent setup that incorporates an explicit renegotiation phase in

which both parties have different bargaining power. In comparison, we make the simplifying

assumption that the principal has full bargaining power. In that regard, our model also

resembles Fudenberg and Tirole (1990), who explore contract renegotiation in a one-time

setting with the principal having full bargaining power. In addition, our renegotiation-proof

contract is characterized as a Markov perfect equilibrium, which is closely related to the

notion of internal consistency in Bernheim and Ray (1989) for repeated games as well as

Ray (1994) and Strulovici (2020) for dynamic games.

Our study is also related to contracting problems with behavioral preferences.4 In partic-

ular, we assume the contracting parties are sophisticated regarding their time-inconsistency.

This resembles Galperti (2015), which focuses on the optimal provision of commitment de-

vices with sophisticated agents. In contrast, a substantial number of studies on behavioral

preferences assume the contracting parties are naive or partially naive. For example, Gottlieb

(2008) studies the optimal design of non-exclusive contracts and identifies different implica-

tions of immediate-cost goods and immediate-reward goods for dynamically inconsistent but

naive consumers. Gottlieb and Zhang (2020) study repeated contracting between a risk neu-

tral firm and dynamically inconsistent but partially naive consumers, and find that at-will

terminations may improve welfare if the level of dynamic inconsistency is sufficiently high.

These studies focus on adverse selection problems (reporting), while we focus on a moral

hazard (hidden effort) problem. Moreover, DellaVigna and Malmendier (2004) analyze the

optimal two-part tariff of a firm facing a partially naive consumer with present-biased pref-

erences. Heidhues and Kőszegi (2010) study a similar setting with naive agents and show

that simple restrictions on contract forms may significantly improve welfare.

In general, the idea that preferences may be dynamically inconsistent as the result of non-

exponential discounting can be traced to early work of Strotz (1955) and Pollak (1968). Since

then, many studies have explored dynamically inconsistent preferences in various settings:

including consumption-saving problems (Laibson, 1997; Krusell and Smith, 2003; Bernheim,

Ray, and Yeltekin, 2015; Ray, Vellodi, and Wang, 2017; Bond and Sigurdsson, 2018; Cao and

Werning, 2018); investment and asset allocation (Caplin and Leahy, 2001; Grenadier and

Wang, 2007; Brunnermeier, Papakonstantinou, and Parker, 2016); monetary policy (Kyd-

land and Prescott, 1977); fiscal policy (Halac and Yared, 2014); procrastination (O’Donoghue

4See Kőszegi (2014) and Grubb (2015) for a survey of this topic.
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and Rabin, 1999), public finance (Bisin, Lizzeri, and Yariv, 2015; Harstad, 2016), etc. These

studies are typically limited to a single party being dynamically inconsistent. In particular,

Li, Mu, and Yang (2016), Liu, Mu, and Yang (2017), Wang, Huang, Liu, and Zhang (2020)

and Rivera (2022) expand standard dynamic moral hazard settings (DeMarzo and Sannikov,

2006; DeMarzo, Fishman, He, and Wang, 2012; and Sannikov, 2008, respectively) to explore

the differences in the optimal contract if the agent has quasi-hyperbolic discounting (while

the principal still has normal exponential discounting). Consistent with what we demonstrate

in our paper, time-inconsistency does not significantly affect the solution to the agent’s prob-

lem: the incentive compatibility conditions in these studies are identical to their respective

benchmarks. In contrast, we focus on the case in which the principal is time-inconsistent.

This makes the contracting problem significantly different, and consequently much more in-

volved. One exception in this line of research is Chade, Prokopovych, and Smith (2008),

who provide a recursive characterization of a repeated game in which all players share the

same quasi-hyperbolic discount function. In comparison, we allow generic, non-exponential,

and potentially different discounting for all players, including quasi-hyperbolic discounting

as a special case.

Our paper also synthesizes and utilizes some of the latest advancements in mathematical

finance research. We use the extended HJB system developed in Björk, Khapko, and Murgoci

(2017) to characterize the equilibrium strategies in time-inconsistent problems. However,

Björk, Khapko, and Murgoci (2017) studies a single-agent problem without moral hazard or

contracting, and leaves the existence of the extended HJB system as an open question.5 Our

solution technique partly follows Yan and Yong (2019), which offers two different but related

approaches: the open-loop strategy which stems from the stochastic maximum principle, and

the closed-loop strategy which discretizes time into a mesh and defines the equilibrium as

the individual mesh size goes to zero. The former approach yields solutions with known

properties such as existence but are difficult to interpret or directly utilize. The latter

approach is more natural in most economics settings and can lead to HJB equations with

Markov controls. However, Yan and Yong (2019) notes that when the diffusion terms are

also part of the controls, as in the case of dynamic contracting problems, the limit of such

HJB equations as the mesh size goes to zero is not necessarily well posed. Thus, the existence

of the solution is not always guaranteed.

5The more recent study of Lindensjö (2019) extends Björk, Khapko, and Murgoci (2017) by showing that
the solution to the extended HJB has certain regularity (smoothness) properties, if such a solution exists.
Meanwhile, He and Jiang (2019) strengthens the equilibrium notion in Björk et al. (2017) to a regular one
that requires each self in the intra-personal game to behaves optimally in every conceivable infinitesimal
length of time. We adopt the original definition of equilibrium in Björk et al. (2017) but show that, under a
non-restrictive assumption on the utility function, our notion of the equilibrium also conforms to the regular
equilibrium defined in He and Jiang (2019).
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Our paper is the first that integrates these individual results into a principal-agent model

and solves a general renegotiation-proof optimal contract with non-exponential discounting.

We also expand this literature with novel analytical results that are potentially applicable

to future studies of related topics. First, we demonstrate how the extended HJB system in

Björk, Khapko, and Murgoci (2017) and the solution techniques of Yan and Yong (2019)

can be applied when the diffusion terms of the state variables (from the solutions to the

agent’s problem) are also part of the (principal’s) controls.6 Second, we prove the existence

of the solution to the extended HJB system by exploiting the connection between differential

equations and non-atomic games of incomplete information. In fact, the novelty of this proof

of existence is independent of the specific contractual setting used in the paper and can thus

be applied to a broad class of problems involving dynamic inconsistency and intra-personal

games. Finally, we demonstrate the applicability of our methodology in economics by ex-

plicitly solving a special class of non-exponential discounting functions commonly used in

economic research. In particular, our examples include quasi-hyperbolic discounting, which

has been used as the pre-requisite of many of the aforementioned studies. Our paper thus

provides both convenient results for researchers wishing to adopt quasi-hyperbolic discount-

ing as one of their model elements and a general framework for those interested in exploring

the impact of non-exponential discounting beyond quasi-hyperbolic discounting.

2 General Framework

In this section, we present the general framework which introduces generic, non-exponential

discounting functions into an otherwise standard dynamic principal-agent model. We lay

out the foundations, solve the agent’s problem, and discuss the precise role of commitment

and renegotiation in the model.

2.1 Basic Environment

A risk-neutral principal (she) contracts with a risk-averse agent (he) over a fixed-time horizon

T <∞.7 Time is continuous and indexed by t. There is a probability space Ω equipped with

a filtration {Ft}t∈[0,T ] and the associated measure P. {Z0
t }t∈[0,T ] is a Ft-measurable stochastic

6In doing so, we utilize the results in Brunick and Shreve (2013), also known as the Gyongy-Dupire
formula pioneered by Gyöngy (1986) and Dupire et al. (1994), for the construction of diffusion processes out
of adapted processes; and Wang and Yong (2019b), for translating the BSVIE resulting from the stochastic
maximum principle to a diffusion inside a PDE.

7The assumption of a finite contracting horizon offers several critical analytical conveniences. It allows us
to represent continuation utility processes as solution to a series of backward-stochastic-differential equations
(BSDE) with known regularity properties, such as the smoothness.
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process representing the Brownian motion under P. The agent affects the monetary output

Mt by selecting a hidden action ât (i.e., his effort) from a compact set [a, ā] at each moment

in time, such that Mt is characterized by a drift plus a Brownian motion {Z â
t }t∈[0,T ] under

the measure Pâ. That is,

dMt = âtdt+ σdZ â
t , (1)

where M0 = 0, and Z â
t = Z0

t −
∫ t
0
âs
σ
ds and σ > 0 is a known constant parameter. At t = 0,

the principal and the agent have outside options worth V and W , respectively, which they

lose once the contract commences. The principal also has unlimited liability — she can

tolerate arbitrarily large losses resulted from the Brownian shocks. She observes the output

Mt, but not the agent’s action ât.

Between time t and t′ the principal’s and the agent’s discount rates are given by self-

indexed functions Rt(t′) and rt(t′), respectively. Such a specification allows for discounting to

vary with both the current self t and an arbitrary future date t′, not just the time difference.

In particular, at time t, the principal uses the mapping defined by Rt : [t,∞) → [0, 1] as

the discount function. One can interpret Rt(s) as if there are infinitely many discounting

functions, one corresponding to each point t in time. Similarly, at time t, the agent uses the

mapping defined by rt : [t,∞) → [0, 1]. We assume that both the agent and the principal

are sophisticated regarding their time preferences and the time preferences are common

knowledge.

We impose the following conditions on Rt(·) and rt(·):

Assumption 1 For all t ≥ 0, the discount functions Rt(·), rt(·) satisfy:

1. Rt(s), rt(s) = 1 for all s ≤ t and lims→∞Rt(s) = 0, lims→∞ rt(s) = 0.

2. Rt(s), rt(s) > 0 for all s > t.

3.
∫∞
t
Rt(s)ds < +∞ and

∫∞
t
rt(s)ds < +∞ a.s.

4. Regarded as bi-functions of t and s, Rt(s) and rt(s) are uniformly Lipschitz continuous

and three times differentiable in both arguments. i.e., there exist constants Kr, KR > 0

such that, for all (s1, t1, s2, t2) ∈ [0,∞) where s1 > t1 and s2 > t2,

|r(t1, s1)− r(t2, s2)| < Kr (|t1 − t2|+ |s1 − s2|) ,

|R(t1, s1)−R(t2, s2)| < KR (|t1 − t2|+ |s1 − s2|) .

The first condition states that the current payoff is not discounted, while the payoff in the

infinitely far future has a present value of 0. The second condition states that any return

8



in a finite future has some positive value, albeit potentially very small. The third condition

ensures that the discounted value of any bounded stream of consumption remains finite.

The last condition is a technical one precluding drastic changes and guaranteeing sufficient

differentiability in the discount functions across and over time.

Overall, Assumption 1 describes a fairly broad class of discount functions (including

those that are not monotonic). One subset of those is the time-difference family in which

the discounting between any two dates s and t is a function of the difference (s − t) only.

This family is of particular interest because it incorporates both the standard exponential

discounting as well as some of the special non-exponential discount functions most commonly

used in the literature. We explore a few of those examples in Section 4. Assumption 1 can be

narrowed down to the time-difference family by imposing the restriction rt(s) = rt+k(s+k) =

r(s− t) and Rt(s) = Rt+k(s+ k) = R(s− t) for all t, s, k. In such a case, the term “discount

functions” refers to r(s− t) and R(s− t).

The agent’s utility depends on his action â and consumption c received from the contract.

We assume his utility function has the following properties:

Assumption 2 The agent has a weakly risk averse utility function of instantaneous con-

sumption and action, u(c, â), such that

1. u is strictly convex and decreasing in â, concave and increasing in c.

2. u is twice differentiable with bounded derivatives.

3. limc→∞ u(c, â) = ∞ and limc→−∞ u(c, â) = −∞ for all â ∈ [a, ā].

The first two requirements are fairly standard. The last is a technical one facilitating the

proof of the general existence theorem (Theorem 1) and is only sufficient but not neces-

sary. For special cases in which more specific properties of the other elements of the model

are imposed (such as those analyzed in Section 4), our results can be derived under more

generalized utility functions.

Since the contracting horizon is finite, we also assume that the agent derives terminal

utility U(cT ) from any terminal consumption cT . U(·) has the standard properties such as

being increasing, concave, and unbounded from below. The agent is not allowed to save,

unless otherwise stated.

A contract C specifies a consumption process {ct}t∈[0,T ] to the agent and a sequence of

recommended actions {at}t∈[0,T ], both measurable with respect to Pâ. Given the contract,

the agent’s time-0 expected payoff, if he follows the recommended actions, is

EC
[∫ T

0

r0(s)u(cs, as)ds+ r0(T )U(cT )

]
.
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The principal’s time-0 payoff equals the expected cash flows net of the consumption to the

agent:

EC
[∫ T

0

R0(s) (dMs − csds)−R0(T )cT

]
= EC

[∫ T

0

R0(s) (as − cs) ds−R0(T )cT

]
.

Because both the agent and the principal can have time-inconsistent preferences, for each

point in time t > 0, we must treat the principal and the agent as different players (selves), to

whom we refer as the “agent’s t-self” and the “principal’s t-self”. Given any contract C and

the agent’s action stream {ât}t∈[0,T ], the expected discounted utility for the agent’s t-self at

any time k ≥ t is defined as

W̃ (k, t) = EC
t

[∫ T

k

rt(s)u(cs, âs)ds+ rt(T )U(cT )

]
, ∀k ≥ t.

In particular, W̃ (t, t) is simply known as agent-t’s continuation utility, where the first t

denotes the time and the second t denotes the self. The conditional expectation (both here

and later) is taken under Ft unless otherwise explicitly stated.

Using these notations we can define an incentive compatible contract as follows:

Definition 1 A contract C = {at, ct}t∈[0,T ] is incentive compatible if at each instant t, the

effort choice of agent’s t-self is the action suggested by the principal, (i.e., ât = at) and

maximizes W̃ (t, t) assuming that all other selves of the agent follow the actions recommended

by the contract C.

When a contract C is incentive compatible, we use

f(k, t) = EC
t

[∫ T

k

Rt(s) (as − cs) ds−Rt(T )cT

]
, ∀k ≥ t.

to denote the expected discounted payoff of the principal’s t-self at any time k ≥ t, where

f(t, t) is simply principal-t’s continuation payoff.

2.2 The Agent’s Problem

We first solve the agent’s problem for a fixed contract C. In general, the agent’s consumption

at any time t could depend on the entire path of the outputs. We resolve this history

dependence by taking the key state variable to be the probability density of the output

process (Mt) instead ofMt itself. This so-called “change of measure” technique is a common

approach in dynamic contracting, most notably used in studies that involve persistent private
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information, such as Williams (2011, 2015), He, Wei, Yu, and Gao (2017), Marinovic and

Varas (2019), Bloedel, Krishna, and Strulovici (2020), Feng (2021), etc. Specifically, for any

sequence of actions {ât}t∈[0,T ], define the following family of Ft predictable processes:

Γt ≡ exp

(∫ t

0

âs
σ
dZ0

s −
1

2

∫ t

0

∣∣∣∣ âsσ
∣∣∣∣2 ds

)
,

with Γ0 = 1. The process {Γt}t∈[0,T ] captures the evolution of the probability density of the

output when the agent takes private actions â and evolves according to

dΓt =

(
ât
σ

)
ΓtdZ

0
t , Γ0 = 1, (2)

i.e., Γt is a controlled Markov process. Under this change of measure (from Z â
t to Z0

t ), the

agent’s payoff from taking any sequence of actions can be written as:

W (t,Γ, t) = EZ0

t

[∫ T

t

Γs(âs)r
t(s)u(cs, âs)ds+ ΓT r

t(T )U(cT )

]
, (3)

subject to (2).8 Thus, given any contract, Γt is the relevant state variable in evaluating the

continuation utility generated by the actions of the agent’s each self at any given time.

We can now analyze the agent’s optimal actions induced by a given contract. Because

each self of the agent is infinitesimal and makes his own decision, all the agent’s selves

collectively play an intra-personal game with each other, taking the contract terms as given.

The optimal actions of each player (each of the agent’s selves) must constitute an equilibrium

of the intra-personal game. In particular, we look for an equilibrium that involves a Markov

strategy for each player that depends on (t,Γt), where Γt is the value of the Γ-process at

time t.9 Formally, such equilibrium is defined as follows:

Definition 2 Consider a contract C and a Markov strategy profile {â(t,Γt)}t∈[0,T ] taken by

the agent. For any initial point and state (t,Γt) and a small increment of time ∆, define a

“deviation” strategy a∆ as:

a∆ =

ã for t ≤ t′ < t+∆

â(t′,Γt′) for t+∆ ≤ t′ ≤ T
,

8Recall that Z0
t is the Brownian motion under the measure P and Z â

t is the Brownian motion under Pâ,

with Z â
t = Z0

t −
∫ t

0
âs

σ ds. Thus E
Z0

t represents the expectation taken under P.
9If the agent is dynamically consistent, any adapted strategy of the agent can be likewise captured. The

Markov restriction is only relevant due to the existence of different selves.
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where ã ∈ [a, ā], is some action potentially different from the one dictated by the strategy

â(t,Γt). Then â(t,Γt) is called an agent equilibrium if

lim inf
∆→0

W (t,Γ, t)−Wa∆(t,Γ, t)

∆
≥ 0 (4)

for all a∆, where Wa∆ denotes the valuation from following a∆. Under an agent equilibrium,

W (t, t) ≡ W (t,Γ, t) is called an equilibrium value process.

In words, for a given contract, each self of the agent at time t given the state Γt explores

whether a deviation can be made for a small time interval ∆ that yields a higher payoff

for him compared to his valuation from following the strategy â(t,Γt). If no such profitable

deviations can be found for each self when taking the limit ∆ → 0, then the entire strategy

profile of all agent’s selves is called an intra-personal equilibrium. Based on this notion of

the equilibrium and the equilibrium value process, the following lemma characterizes the

agent’s continuation utility and the incentive compatibility condition for a given contract:

Lemma 1 Under Assumptions 1 and 2, given any contract C = {at, ct}t∈[0,T ] and any se-

quence of the agent’s choices, there exists a flow of processes ψ̃(s, t) and an equilibrium value

process W such that

W̃ (k, t) = rt(T )U(cT )−
∫ T

k

rt(s)u(cs, âs)ds+

∫ T

k

ψ̃(s, t)dZ â
s , (5)

for each t-self of the agent and each k > t. The equilibrium value process satisfies

W (t) = W̃ (t, t) . (6)

The contract C is incentive compatible if and only if

ψt =
ψ̃(t, t)

σ
= ua(ct, at). (IC)

Compared to benchmark models with time-consistent preferences (e.g., Sannikov, 2008),

the implications of Lemma 1 are two-fold: on the one hand, unlike the benchmark, the

time-inconsistent preference implies that the agent’s continuation utility becomes a flow of

processes, one for each t-self of the agent. W̃ (k, t) represents the value of continuation from

period k onward for the t-self. Setting k = t yields W (t), the continuation utility of the

t-self agent, taking into account not only the change in time but also the change in the

agent’s future preferences. Consequently, Wt ∈ R which is the realization of W (t) at time t

is the relevant state variable for the principal when designing the optimal contract. On the

12



other hand, despite the existence of future selves, the IC condition (IC) is a local constraint

similar to the time-consistent benchmark. This is because the agent’s action does not have

a persistent effect, and each self wants to maximize his own utility.

Remark 1 Broadly speaking, there are two types of solution strategies to a general stochas-

tic control problem: open-loop, and closed-loop, with the former (which is only progressively

measurable) being a superset of the latter (Markov) controls (see Sun, Li, and Yong, 2016 and

Zhang and Li, 2018 for discussions). Open-loop controls are widely used in time-inconsistent

problems as the existence of equilibrium is relatively straightforward.10 As Lemma 1 shows,

the agent’s continuation utility in our setting is summarized by a Backward Stochastic

Volterra Integral Equation (BSVIE), which captures a flow of continuation payoffs with flows

of sensitivities to the Brownian motion which follows from a stochastic maximum principle.

The challenges of the open-loop strategies is that the stochastic maximum principle yields ad-

ditional co-state variables, of which one must keep track in order to characterize the dynamics

of the equilibrium value process. However, as we show in the proof of Theorem 3 later, the

simplicity of the agent’s problem in our setting allows the dynamics of the equilibrium value

process W (t) to be represented by a diffusion (without the co-state variables) and W (t) to

be used as the state variable in the principal’s problem. Despite the difficulty of tractability,

the co-state variables have the advantage of easier interpretation as the sensitivities of the

agent’s equilibrium continuation value. In comparison, a closed-loop strategy usually yields a

diffusion for the equilibrium value and Markov controls directly, which are easier to analyze

but lacking the interpretation of co-state variables as sensitivities. For the agent’s problem

in our setting, these subtle differences between the two types of controls do not pose an issue.

It can be shown that any one-dimensional process with adapted coefficients has a diffusion

representation.11 Thus, we can without the loss of generality state Definition 2 directly from

a Markov control, and adopt open-loop controls for the agent’s problem taking advantage of

its easier interpretation.

2.3 Renegotiation and Commitment

The introduction of time-inconsistent preferences necessitates some formal discussion of the

principal’s ability to commit to the contract. In particular, a future self of the principal with

time-inconsistent preferences may find full commitment to be sub-optimal, as the resulting

contract would prevent potentially beneficial alterations, once the principal’s own preference

10To our knowledge, for closed-loop controls our Theorem 1 is the only result on the existence of the
solution when the diffusion term is controlled.

11See, e.g., Brunick and Shreve (2013) Corollaries 3.7 and 3.13. Similar results are broadly known as
Gyongy-Dupire formulas as discussed in Gyöngy (1986) and Dupire et al. (1994).

13



has changed over time. To address this issue, we consider contract renegotiation in our

model as follows: the principal can offer a new long-term contract at any point in time. If

the agent rejects the newly offered contract, the old contract stays in place, but can still be

changed in the future by a different self (as in Watson, Miller, and Olsen, 2019). We further

assume that the agent breaks indifference in favor of acceptance.12

A renegotiation is feasible if the agent is willing to accept the contract given his prefer-

ences at the time and the contract is incentive compatible with all future selves. Formally:

Definition 3 An incentive compatible contract C ′ is a feasible renegotiation of an incentive

compatible contract C at time t valued at W given information Ft if the following inequality

holds

EC′

t

[∫ T

t

rt(s)u(c′s, a
′
s)ds+ rt(T )U(c′T )

]
≥ EC

t

[∫ T

t

rt(s)u(cs, as)ds+ rt(T )U(cT )

]
= W.

We will call C ′ a feasible renegotiation of C at time t that promises W ′ ≥ W ∈ R if, in

addition,

EC′

t

[∫ T

t

rt(s)u(c′s, a
′
s)ds+ rt(T )U(c′T )

]
= W ′.

Based on this definition, the new set of actions and consumption of each feasible renego-

tiation contract must generate weakly higher continuation utility for the agent.13 Note that

a renegotiation could increase the payoff not only to the current self but also to the future

selves, because those payoffs represent the valuations of the same stream of consumption and

actions, albeit with different weights. However, our next proposition shows that, for each

feasible and incentive compatible contract C ′, there exists a principal-preferred alternative C ′′

that is both feasible and incentive compatible, inducing the same actions and prescribing the

same consumption to the agent as C ′ does, while keeping the currently renegotiating agent’s

continuation utility unchanged by lowering only the final consumption cT . Formally,

12By restricting the agent’s decision to whether to accept the contract or not we effectively assign the
principal with all the bargaining power. It is possible to allow the agent and the principal to bargain
over the total surplus at the outset of the contract. This changes the minimum utility that the agent can
extract from the contract and thus possibly the optimal initial continuation utility W0. Assigning the agent
bargaining power during the renegotiation process after t > 0 though introduces a number of analytical
challenges and is thus left to future research.

13Our notion of renegotiation defines an incentive compatible contract for the remainder of the contractual
relationship. This is a less restrictive notion than the recursively defined set of feasible renegotiations (as
in, e.g., Benoit and Krishna, 1993), which explicitly includes the strategies of the principal and the agent’s
future selves. However, imposing such equilibrium restrictions on the set of feasible renegotiations does not
change the renegotiation-proof contract because of the focus on a principal intra-personal equilibrium. More
discussion can be found in Section 3.1.
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Proposition 1 Let C be an incentive compatible contract. For any feasible renegotiation C ′

of C at time t given information Ft, there exists a principal-preferred alternative C ′′ such

that (c′t, a
′
t) = (c′′t , a

′′
t ) for all t < T and

EC
t

[∫ T

t

rt(s)u(cs, as)ds+ rt(T )U(cT )

]
= EC′′

t

[∫ T

t

rt(s)u(c′′s , a
′′
s)ds+ rt(T )U(c′′T )

]
.

Moreover, all selves of the principal weakly prefer {c′′t , a′′t }t∈[0,T ] over {c′t, a′t}t∈[0,T ].

Proposition 1 implies that there is no Pareto improvement for the principal’s selves by

offering the agent higher continuation utility. Furthermore, because C ′′ induces the same

paths of actions and prescribes the same consumption as C ′ does except for a lower final

consumption, C ′′ is “preferred” not only by the current principal, but by all the principal’s

past and future selves. This result is a generalization of Theorem 1 in Fudenberg, Holmstrom,

and Milgrom (1990) with similar intuition: while a renegotiation can induce different paths

of consumption and actions with different probabilities, the principal-preferred alternative

keeps those paths and their probabilities unchanged while decreasing the terminal payments

on each path, so that the terminal utility decreases by a fixed amount. This does not change

the incentives for any self of the agent because his ranking of the histories remains the same.

The principal can reduce the promised utility in this way until it reaches the level of the

existing contract. This increases the payoff to all principals’ future selves, because the only

payoff in the utility function of all her future selves is the terminal one.

In the case of a dynamically consistent preference, Proposition 1 is sufficient to imply

that no renegotiation with a higher payoff to the agent is also a Pareto improvement. In the

case of a dynamically inconsistent preference, we must also consider the strategic incentives

for renegotiation. That is, whether a renegotiation, if accepted, can potentially alter the

renegotiation between the principal and agent’s future selves. Our next result, which is not

covered in Fudenberg, Holmstrom, and Milgrom (1990), demonstrates that renegotiation

cannot achieve any strategic improvement for either the principal or the agent: neither of

them can utilize renegotiation to expand or restrict the set of implementable actions and

consumption available to their future selves. Formally:

Proposition 2 Given any value of continuation utility W ∈ R, let ξt(W ) represent the set

of feasible distributions over {as, cs}s∈[t,T ) except the final action, consumption pair (aT , cT )

that can be generated by a feasible renegotiation that promises the same value W to the t self

of the agent. Formally:

ξt(W ) =
{
{as, cs}s∈[t,T ) ∈ µ(t)

∣∣∣∣∃cT ∈ R s. t. E
[∫ T

t

rt(s)u(cs, as)ds+ rt(T )U(cT )

]
= W

}
,
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where µ(t) denotes the of distributions over [0, T )× [−∞,∞]× [a, ā]. For any t ∈ [0, T ) and

any arbitrary pair ofW ′,W ′′, (W ′ ̸= W ′′) the set ξt(W
′) is equal to ξt(W

′′), ξt(W
′) = ξt(W

′′).

Proposition 2 argues that regardless of how a feasible renegotiation changes the level of

continuation utility of the time-t agent, the available set of actions and consumption paths

until T that are incentive compatible in the future remains intact. Therefore, each principal’s

time-t self cannot use renegotiation to strategically influence the behavior and policies of her

future selves. Similarly, each agent’s time-t self cannot use the acceptance or rejection of a

renegotiation to strategically influence the behavior and policies that the principal’s future

selves can offer. The intuition follows that for Proposition 1. Suppose a principal’s current

self is considering a feasible renegotiation that is not principal-preferred for the purpose

of forestalling a particular renegotiation in the future. Similar to Proposition 1, what the

principal’s future self could do is simply increasing the final payment on every possible

path such that the continuation payoff at the time of renegotiation attains this higher level.

In that way, the future self can implement the consumption and action path she desires

regardless of the continuation utility carried over, and she would indeed do so. Thus, any

renegotiation that is not principal-preferred reduces the payoff for all of the principal’s future

selves without limiting the set of feasible action paths for any of her future selves.

The absence of this strategic role of renegotiation implies that in our setup, we can

without the loss of generality limit our attention to principal-preferred renegotiations. That

is, we only need to consider renegotiations that do not change the agent’s continuation utility,

only how such continuation utility is delivered. Any other renegotiation that would result

in a strictly higher continuation utility to the agent is never optimal for the principal and

thus never offered.

Remark 2 Besides applying our framework, one can address the issue of renegotiation in

alternative, albeit more restrictive settings. One option is to directly rule out renegotiation

by imposing the assumption of full commitment. In this case, the contract is never rene-

gotiated but is also not necessarily renegotiation-proof, because the principal’s future selves

may evaluate the same payoff streams differently than her time-0 self. Another option is to

assume special forms of non-exponential discounting that still yield dynamically consistent

preference. Then, the contract is (trivially) renegotiation-proof because what is optimal to

the principal at time-0 remains optimal to her future selves. However, this setting requires

specific weights of the discount functions of each self on different dates. Formally, it requires
Rt(s)

Rt(s+k)
= Rt′ (s)

Rt′ (s+k)
and rt(s)

rt(s+k)
= rt

′
(s)

rt′ (s+k)
for all t, t′, s, and k. In contrast, our objective is to

explore the optimal long-term contract in a general setting in which the need for renegotiation

is a natural consequence of dynamic inconsistency.

16



3 The Optimal Contract

In this section, we define and solve the optimal contract in several steps. First, we establish

a formal definition of what the “optimal contract” refers to in our setting. Next, we provide

a heuristic derivation of the extended HJB system that characterizes such a contract. Fi-

nally, we state our main theorem regarding the characterization and existence of the optimal

contract, and compare it to the optimal contract in dynamically consistent benchmarks.

3.1 Intra-personal Game and the Optimal Equilibrium Contract

In this subsection, we establish a formal and economically appropriate notion of what “opti-

mal contract” refers to in this paper. First and foremost, as in the agent’s problem, dynamic

inconsistency and the possibility of contract renegotiation imply that the contracting prob-

lem can be formulated as an intra-personal game played by the different selves of the prin-

cipal and the agent. However, while the intra-personal game among the agent’s selves take

the contract terms as given, the intra-personal game of the principal is substantially more

involved, as it must take into account the equilibrium of the agent’s intra-personal game

induced by the principal’s contract offers. In light of Lemma 1, we focus on the Markov

Perfect Equilibrium (MPE) with W (t) being the state variable. That is, we look for an

equilibrium in which the principal’s t-self’s strategy is a mapping of W (t) onto a contract

— a contingent path of recommended actions and consumption that promises W (t) – and

the agent’s t-self’s strategy is to reject or accept the contract and choose an action.

Given Propositions 1 and 2, it is sufficient to verify that a contract is renegotiation-proof

as long as there is no deviation that the principal prefers. This implies that a renegotiation-

proof contract corresponds to an MPE, because it satisfies the intra-personal equilibrium

of the principal and is incentive compatible for all selves of the agent. Altogether, these

observations imply that the intra-personal game among the different selves of the principal

and the agent can be simplified to an auxiliary game. The time-t principal takes the equi-

librium continuation process as given (which depends on the other principals) and chooses

the contract terms, assuming she affects only the process at time-t subject to the incentive

compatibility constraint identified in Lemma 1. Let

fC(t,W, t) = EC
t,W

[∫ T

t

Rt(s) (as − cs) ds−Rt(T )cT

]
(7)

denote the continuation payoff of the t principal’s time-t self from period t onward given an

agent equilibrium under contract C with a current promised value W . With a slight abuse

of notation we let C(t,W ) denote the actions for the principal under the contract C when
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time is t and the agent′s continuation payoff under C is W . Analogous to Definition 2, an

equilibrium contract of this auxiliary game of the principal is given as follows:

Definition 4 Consider an incentive compatible contract process C. For any initial point and

state (t,W ) and a “small” increment of time ∆, define a “deviation” strategy C∆ as:

C∆ =

Ĉ(t′,W ′) for t ≤ t′ < t+∆

C(t′,W ′) for t+∆ ≤ t′ ≤ T
,

where Ĉ ̸= C is another incentive compatible contract and W ′ is the state corresponding to

the future date t′. C is called an equilibrium contract if

lim inf
∆→0

fC(t,W, t)− fC∆(t,W, t)

∆
≥ 0 (8)

for all Ĉ. For an equilibrium contract C, the corresponding value function fC(t,W, t) is called

as an equilibrium value function.

The equilibrium contract in Definition 4 corresponds to an MPE of the game between the

agent’s selves the principal’s selves and is renegotiation-proof. Each self of the principal and

the agent has controls over a positive measure of time that vanishes to zero in the equilibrium

(when the gains from deviation also vanish). The local optimality corresponds to the best

response of each self to the choices of the other selves, thus characterizing the payoffs each self

receives in the intra-personal game. This construction is necessary in the continuous-time

setup because each self of the agent/principal only has infinitesimal control.14

Remark 3 We apply closed-loop (Markov) controls for the principal’s problem for better

interpretation and tractability. Open-loop controls (based on the stochastic maximum princi-

ple) yield first- and second-order co-states variables that are difficult to interpret economically

and make the construction of Markov strategies analytically challenging.

Our notion of equilibrium can also be further strengthened if needed. For example, one

can impose the definition of regularity introduced in He and Jiang (2019): a contract is a

regular equilibrium if a “local” deviation to another contract in a however small time interval

14This notion of equilibrium is an extension of the so-called “closed loop” controls introduced Ekeland
and Lazrak (2010) by Björk et al. (2017). Studies such as Wei et al. (2017) and Li et al. (2017) have shown
that along the trajectory, such controls remain time-consistent and locally optimal, and hence constitute an
equilibrium if they exist. Since each self of the principal/agent has no direct effect (measure 0), defining
MPE directly in this setup would not be instructive due to the trivial multiplicities from measure 0 changes.
Thus to avoid the additional notational burden we directly impose our Definitions 2 and 4 as the MPE of
our game. Details about the space of Markov strategies and the equilibrium are available upon request. We
thank an anonymous referee for suggesting the definition of equilibrium in this fashion.
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is not profitable. Formally, given a contract Ĉ, there exists ∆∗ such that 0 < ∆ < ∆∗ and

fC(t,W, t) ≥ fĈ(t,W, t) for all ∆. If the agent’s utility function u(c, a) is separable in a and c,

our equilibrium is also a regular equilibrium as in He and Jiang (2019). If the utility function

is not separable then uac > 0 is required for regularity. See Appendix A.7 for details.15

We can now define the optimal contract as the contract that maximizes the principal’s

continuation payoff at each point in time among the set of renegotiation-proof, incentive-

compatible equilibrium contracts C. Formally,

Definition 5 Let C denote the set of equilibrium contracts. A contract C ∈ C is optimal if

it maximizes fC(t,W, t) for all t,W .

The principal’s valuation of an optimal equilibrium contract can now be written as:

V (t,W ) = sup
C∈C

fC(t,W, t) = sup
C∈C

EC
t,W

[∫ T

t

Rt(s) (as − cs) ds+B(t,WT )

]
. (9)

where B(t,WT ) ≡ −Rt(T )U−1(WT ). In contrast to the problem of a single decision maker,

the value function in (9) represents optimality as a notion of an equilibrium, not simply what

a single self of the principal deems optimal. Taking the time-t principal as given, the optimal

contract maximizes her value at all other times. Put differently, Definition 4 introduces the

notion of equilibrium, and 5 defines the optimal contract as a Pareto-efficient equilibrium.16

In summary, this subsection establishes a formal and economically appropriate notion of

what “optimal contract” refers to in this paper. To resolve the issue of dynamic inconsistency,

we meticulously laid out several critical definitions and results to reach the conclusion that

the most appropriate definition of the optimal contract is a principal-optimal equilibrium

contract (as in Definitions 4 and 5). In the subsequent analysis, we simply refer to this

contract as the optimal contract or the equilibrium contract.

3.2 Optimal Contract: Heuristic Derivation

This subsection provides a heuristic derivation of the optimal contract with a moderate

amount of technicality. The main purposes are threefold: first, to introduce some no-

tations that are not required in time-consistent dynamic programming but are necessary

when time-inconsistency is involved. Second, to remind readers the standard HJB equation

for a time-consistent benchmark under our notations. Third, to heuristically establish the

15We thank an anonymous referee for bringing this connection to our attention.
16Note thatWt is an endogenous, equilibrium object, as opposed to the exogenous process used in stochastic

control studies featuring similar definitions of optimality (e.g., Björk et al., 2017).
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extended HJB systems that are critical for characterizing the optimal contract under time-

inconsistency, and compare them to the standard HJB equation. The formal characterization

of the optimal contract is given in Theorem 1 in Subsection 3.3.

A. Notations

We first introduce a few necessary notations. We have defined the equilibrium value function

fC(t,W, t) in (7) and the optimal equilibrium value function V (t,W ) in (9), both of which

are equilibrium objects. In particular, a change in t moves both the self and the time in those

objects forward. However, when a fixed self makes forward-looking decisions, it is important

to keep track of how the continuation value evolves over time for that particular self. We

thus distinguish a changing self from a changing time for a fixed self by treating the third

entry in fC(t,W, t) as a parameter, denoted by a superscript f tC(t,W ), to highlight that the

self is fixed. That is, for a fixed self t, the continuation payoff under a contract C from time

t′ onward is denoted as

f tC(t
′,W ) = EC

t′,W

[∫ T

t′
Rt(s) (as − cs) ds+B(t,WT )

]
, (10)

While f tC(t,W ) looks very similar to fC(t,W, t) (which coincides with V (t,W ) under the

optimal contract), they represent different objects and respond differently to changes in the

contract. Specifically, following any changes in the contract C, f tC(t+dt,Wt+dt) captures how

the t-self’s own valuation from time t+ dt onward changes; fC(t+ dt,Wt+dt, t+ dt) captures

how the t + dt’th self’s valuation in the current equilibrium changes; and V (t + dt,Wt+dt)

captures how the principal’s optimal equilibrium value from t+ dt onward changes.

Let fC,t(t,W, t) denote the total derivative with respect to t. Ito’s lemma implies

f tC(t+ dt,Wt+dt) = f tC,t(t,W )dt+ µC
Wf

t
C,W (t,W )dt+

1

2
(σC

W )2f tC,WW (t,W )dt+ f tC(t,W ),

fC(t+ dt,Wt+dt, t+ dt) = fC,t(t,W, t)dt+ µC
WfC,W (t,W, t)dt+

1

2
(σC

W )2fC,WW (t,W, t)dt+ fC(t,W, t),

V (t+ dt,Wt+dt) = Vt(t,W )dt+ µC
WVW (t,W )dt+

1

2
(σC

W )2VWW (t,W )dt+ V (t,W ).

µC
W corresponds to how principal controls the drift of the W . Similarly, σC

W corresponds to

how principal controls the volatility ofW . For ease of exposition, we adopt the notation AC ,

known in the literature as the controlled infinitesimal generator, to simplify the functions
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above. That is,

ACf tC(t,W ) ≡ lim
dt→0

f tC(t+ dt,Wt+dt)− f tC(t,W )

dt
, (11)

ACfC(t,W, t) ≡ lim
dt→0

fC(t+ dt,Wt+dt, t+ dt)− fC(t,W, t)

dt
, (12)

ACV (t,W ) ≡ lim
dt→0

V (t+ dt,Wt+dt)− V (t,W )

dt
. (13)

Finally, if the principal implements a different contract C̃ at a single point of time t, we use

AC̃fC(t,W, t) and AC̃f tC(W, t) to capture the effect of such deviation from the contract C on

fC(t,W, t) and f
t
C(W, t), respectively.

B. Reminder: A Time-consistent Benchmark

Consider a simple benchmark of an infinite horizon dynamic contracting problem with expo-

nential discounting. Using our notations, we can state the principal’s optimization problem

as follows:

V (t,W ) = sup
C∈C

EC
t,W

[∫ T

t

e−rs(as − cs)ds− e−(T−t)cT

]
.

where Wt is the agents continuation utility process with value W at time t. The optimal

contract can be summarized using the standard HJB equation:

rV (t,W ) = sup
C̃

{
(ãt − c̃t) + µC̃

WVW +
1

2

(
σC̃
W

)2
VWW

}
,

where C̃ denotes the contemporaneous pair of contract policies: C̃ ≡ {ãt, c̃t}. Importantly,

the HJB equation relies on the fact that when both the process Wt and the discounting

function e−rt are time-homogeneous, i.e., ∂V/∂t = −rV (t,W ). If time is also a state variable

of the contracting problem, a more general HJB equation takes the following form:

0 = sup
C̃

{
(ãt − c̃t) + Vt + µC̃

WVW +
1

2

(
σC̃
W

)2
VWW

}
.

In our notation, the HJB equation for a standard time-consistent dynamic contracting

problem can be written as

0 = sup
C̃

{
(ãt − c̃t) +AC̃V (t,W )

}
. (14)
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C. Time-inconsistency: The Extended HJB System

We now turn to our setting. Observe that by construction, we have

fC(t,W, t) = (at − ct) dt+ EC
t+dt,Wt+dt

[∫ T

t+dt

Rt (s) (as − cs) ds+Rt (T )B(t,WT )

]
,

= (at − ct)dt+ fC(t+ dt,Wt+dt, t). (15)

Recall from (9) that V (t,Wt) = supC∈C fC(t,Wt, t). Hence, V (t + dt,Wt+dt) = supC∈C fC(t +

dt,Wt+dt, t+ dt). Combined, they imply that C is optimal between t and t+ dt, therefore:

0 = sup
C̃

{V (t+ dt,Wt+dt)

−fC,t(t,W, t)− µC̃
WfC,W (t,W, t)dt− 1

2
(σC̃

W )2fC,WW (t,W, t)dt− fC(t,W, t)

}
. (16)

Because C consists of the optimal choices of C̃, the last few terms can be combined in to

fC(t+ dt,Wt+dt, t+ dt), which yields

0 = sup
C̃

{V (t+ dt,Wt+dt)− V (t,W ) + fC(t,W, t)− fC(t+ dt,Wt+dt, t+ dt)} . (17)

Adding and subtracting f(t+ dt,Wt+dt, t) and using the identity (15) yields

0 = sup
C̃

{V (t+ dt,Wt+dt)− V (t,W ) + (ãt − c̃t) dt

+fC(t,W, t)− fC(t+ dt,Wt+dt, t+ dt) + fC(t+ dt,Wt+dt, t)− fC(t,W, t)} . (18)

Dividing both sides by dt and taking the limit as dt→ 0 this equation can be written as:

0 = sup
C̃

{
AC̃V (t,W ) + (ãt − c̃t)−AC̃fC(t,W, t) +AC̃f tC(t,W )

}
. (19)

In particular, f t(t,W ) must be a martingale since f s(t+ dt,Wt+dt) captures how the princi-

pal’s s-selves total payoff changes over time.17 Thus, under the optimal contract C,

ACf sC(t,W ) +Rs(t)(aCt − cCt ) = 0, (20)

17By law of iterated expectations, f t(t, w) = E[
∫ T

t
Rt(s)(as − cs)ds + B(t,WT )|Ft] and E[f t(s, w)|Ft] =

E[E[f t(s, w)|Fs]|Ft] = f t(t, w) where s > t.
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for all s ≤ t.Equations (19) and (20) are the two critical components defining the extended

HJB system used to formally characterize the solution to the optimal contract next.

3.3 Optimal Contract: Formal Characterization and Existence

We are now in the position to present the main result of this paper:

Theorem 1 Under Assumptions 1 and 2, there exists a principal-optimal renegotiation-proof

equilibrium contract (as in Definition 4 and 5) C = {at, ct}t∈[0,T ]. The principal’s equilibrium

value function V (t,W ) under this contract is given by:

V (t,W ) = EC
t,W

[∫ T

t

Rt(k) (ak − ck) dk +B(t,WT )

]
. (21)

V (t,W ) satisfies the following extended HJB system:

sup
C̃

{
AC̃V (t,W ) + (ãt − c̃t) +AC̃f tC(t,W )−AC̃fC(t,W, t)

}
= 0, (22)

subject to (6), the IC condition (IC), and boundary condition:

V (T,W ) = B(T,WT ) for all W. (23)

For each fixed s, f s(t,W ) is defined as the solution of the following equation:

ACf sC(t,W ) +Rs(t) (at − ct) = 0, (24)

and f sC(t,W ) = fC(t,W, s).
18

Theorem 1 highlights the novel features of the optimal contract under time-inconsistent

preferences. While the principal’s value function in a time-consistent benchmark is captured

by a single HJB equation involving only (ãt− c̃t) and AC̃V (i.e., equation 14 in the previous

section), the principal’s value function with time-inconsistent preferences involves extra terms

in (22). One of the extra terms, AC̃f tC(t,W ), is the solution to a system of backward stochastic

equations (24). These extra terms stem from the different objects represented by the value

function V (t,W ). In a time-consistent case, the value function tracks how the principal

18Under the optimal controls AC̃VC̆(t,W ) = AC̃fC̆(t,W, t) ̸= AC̃f tC̆(t,W ), which allows a cancellation in

Equation (22). The cancellation is useful for the proof of the existence of the solution (which we utilize in the
Appendix) but is actually inconvenient for deriving the value function, because the extended HJB system
still has both forward and backward components. For specific utility or discount functions, more convenient
simplifications of the entire system are possible, as shown in Section 4.
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evaluates her discounted future payoff. Changes in time do not change the principal’s selves

or how the discounting is made. In our setup, the value function tracks how the principal

at each time (i.e., each of her selves) evaluates the discounted future payoff in an optimal

equilibrium of her intra-personal game. Changes in time change the principal’s relevant self,

and the value function is consequently linked to the equilibrium of the intra-personal game

between the different selves.

When the principal’s t-self evaluates the contract terms, her evaluation is based on her

current preferences, which yields the term f tC(t,W ). Meanwhile, when evaluating a small and

potentially sub-optimal change in the contract terms, the principal’s t-self must also consider

the effect of such a change on her future selves, especially the immediately following self.

Such consideration is reflected by the term fC(t,W, t), which treats the selves as a changing

variable. Finally, along the equilibrium path, all selves of the principal correctly anticipate

the behavior of her future selves, and her evaluation takes those future behaviors into account.

This backward induction logic of the intra-personal game implies that the backward equation

system (24) behaves as a martingale and hence always equals to 0.

Besides the heuristic explanation of the extended HJB system, we must establish three

additional results to complete the theorem: first, at least one solution to the system exists;

second, if multiple solutions exist, they must all be captured by the system we propose;

finally, we need a verification theorem showing that the solution to the extended HJB is the

value function of the underlying contracting problem. The existence problem is known to be

particularly challenging among existing studies. As noted in Björk et al. (2017), “[t]he task

of proving existence and/or uniqueness of solutions to the extended HJB system seems (...)

to be technically extremely difficult”. To address this challenge, we adopt a novel approach

connecting the extended HJB system to a static game of incomplete information. We prove

that the game has an equilibrium and therefore the system has a solution.19

More specifically, because the extended HJB system is the result of the intra-personal

game among the principal’s different selves, we can treat this system as a static non-atomic

game in which the utility function of each player incorporates the solutions of each of the

backward systems (equations 24). This is a game of incomplete information with a particu-

lar structure: first, the random variable of interest is the entire realization of the Brownian

Motion. Second, the game is populated by a mass of players all with different character-

istics (their discount function Rt) and information (the filtration Ft) but the same action

set. Third, each player’s utility is a function of his or her own action, characteristics, and

19The solution may not be unique under the general framework, a common property of dynamic program-
ming problems in which the uniqueness of the solution usually requires problem-specific boundary conditions.
Nevertheless, the solution is (without the loss of generality) optimal following Definition 5.
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information, as well as an aggregation of other players’ actions, while an equilibrium of the

game is a distribution over the players’ utility functions, strategies, and information.

In the equilibrium, the marginal distribution over the characteristics of the players is

uniform over [0, T ]. Thus, each t-self is a player whose action is the best response to the

expected valuations identified by the backward equation given the information Ft. This

novel transformation from the intra-personal game to a non-atomic game with incomplete

information converts the original dynamic problem into a static one, and the dynamic opti-

mization of the original game is reduced to the information set of each player in the static

game.20 Utilizing Balder (1991), this non-atomic static game with incomplete information

has an equilibrium in distributional strategies. Thus, the existence of an equilibrium in this

non-atomic game implies the existence of a solution to the extended HJB system. We provide

a verification argument for Theorem 1: any contract C that solves the extended HJB system

must be an equilibrium contract. We prove that the converse is also true: any equilibrium

contract C must also solve the extended HJB system. Consequently, Theorem 1 captures all

principal-optimal renegotiation-proof equilibrium contracts in our model.

The proof of existence and the verification theorem are critical components of Theorem

1 but are technically involved. Readers who are only interested in applying our framework

to solve problems with dynamically inconsistent decision makers can adopt the results in

Theorem 1, knowing that a solution exists and is well behaved. In Section 4, we apply

Theorem 1 to a specific family of discount functions in which we obtain closed-form solutions

and conduct straightforward comparative statics.

Remark 4 Before closing this section, we wish to highlight that the following seemingly

natural approach of proving Theorem 1 will encounter serious technical hurdles: selecting an

arbitrary incentive compatible contract C, defining f t(t,W ) via the backward equations (24),

solving V (t,W ) by maximizing the HJB equation, finding C ′ (the contract that generates the

solved V (t,W )), and starting this process over from C ′ in an attempt to find a fixed point

using standard arguments (e.g. Schauder fixed-point theorem). However, such an approach

requires establishing technical conditions on the mapping of C to C ′, which are endogenous

objects. Typically, it is difficult to ascertain which combination of the model primitives will

guarantee those conditions.

20To the best of our knowledge, such transformation is new and allows us to establish the existence of a
solution to similar systems of PDEs. Thus, we believe this proof technique can be fruitfully used to prove
the existence of a larger class of dynamic systems. Readers interested in applying this proof of existence
strategy can find the details of this technique in the Appendix.
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4 Application: Time-difference Discount Functions

In this section we demonstrate the applications of our general framework. We show that

a particular class of discounting functions: the time-difference discount family, combined

with a widely-used set of simplifying assumptions on the agent’s side: CARA utility plus

hidden savings, delivers closed-form solutions to the optimal contract (Section 4.1). We then

further explore a specific example in this discount family, quasi-hyperbolic discounting, and

offer a comparison of the resulting optimal contract with that under exponential discounting

(Section 4.2). Finally, we discuss the practical implications of our results (Section 4.3).

4.1 General Time-difference Discounting

The time-difference discount family is defined as follows:

Definition 6 A family of discount functions Rt(s) is called a time-difference discount family

if Rt(s) = Rt+k(s + k) = R(s − t) for all s, t, k. We call the function R(s − t) as a time

difference discount function.

The unique feature of this type of discount function is that it relies on s− t only and not on

t or s individually, thus the notation R(s− t) in lieu of Rt(s). This discount family includes

some of the well-studied time-inconsistent preferences, such as quasi-hyperbolic discounting

(as in e.g., Harris and Laibson, 2012) and anticipatory utility (as in e.g., Loewenstein, 1987).

Restricting the principal’s discount function to within this family means that ACfC(t,W, t)

and ACf tC(t,W ), the two critical terms in the extended HJB system in Theorem 1 can be

simplified as follows

AC̃fC(t,W, t) = EC
t,W

[∫ T

t

(
R(s− t)ÃC(as − cs)−R′(s− t)(as − cs)

)
ds

]
− R(T − t)ÃCEC

t,W [cT ] +R′(T − t)EC
t,W [cT ] ,

and

ÃCf tC(t,W ) = EC
t,W

[∫ T

t

R(s− t)AC̃(as − cs)ds

]
+R(T − t)ÃCEC

t,W [cT ] .

Therefore, the extended HJB system is reduced to the following single HJB equation:

sup
C̃

{AC̃V + (ãt − c̃t) +EC
t,W

[∫ T

t

R′(s− t)(as − cs)ds

]
−R′(T − t)EC

t,W [cT ]} = 0. (25)

This single HJB equation (25) can be further simplified by imposing some structures on

26



the agent’s side. Doing so is without the loss of generality because, as we have shown in

Section 2, the main impact of dynamic inconsistency in our model is on the principal side.

In particular, we introduce the following widely-used simplifying set of assumptions on the

agent’s side:

Assumption 3 The agent has the following exponential discounting function:

rt(s) = e−γ(s−t),∀t, s ∈ [0, T ]

where γ > 0 and a constant-absolute-risk-aversion (CARA) utility function:

u(c, a) = −1

η
e−η(c−

k
2
a2),

where η > 0 measures his degree of risk-aversion and k > 0 captures the marginal cost of

effort. The agent also has access to a private savings account of which the balance grows at

rate γ.

Assumption 3 brings two sets of benefits: first, the principal optimal long-term contract

would be renegotiation-proof if the principal were also an exponential discounter (as in Holm-

strom and Milgrom, 1987). This allows us to isolate the impact of renegotiation-proofness for

the ensuing analysis regarding non-exponential discounting. Second, Assumption 3 implies

a simplification of the agent’s problem that is commonly used in the contracting literature.21

In our model, this simplification manifests as follows:

Lemma 2 Under Assumption 3 the agent’s continuation utility satisfies

dWt = ψt(dMt − atdt) , (26)

u(ct, at) = γWt . (27)

The agent’s incentive compatibility condition becomes

ψt = kat. (28)

21Studies that utilize the same CARA utility plus hidden savings combination include He (2011), Williams
(2015), Gryglewicz and Hartman-Glaser (2020), Marinovic and Varas (2019), and Bloedel, Krishna, and
Strulovici (2020), etc. For simplicity we also assume U = u(·, 0), that is equivalent to normalizing the discount
rate to 1 when the relationship ends. Other normalizations follow analogously and yield qualitatively similar
results. Note that because there exists a well-behaved process Wt (given in Lemma 2 below) representing
the agent’s continuation utility here theorem 1 is still applicable under this simplified environment despite
the fact that CARA and hidden savings are not part of Assumption 2.
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The evolution of ln(W ) is given by

E [ln(−Wt)] = ln(−W0) +
1

2

∫ t

0

η2γ2σ2 k2a2sds. (29)

Finally, there is no private savings on the equilibrium path.

Here, ψt represents the contract’s incentive power: the variations in the agent’s continua-

tion utility following the realized cash flows. The dynamics of ψt has important practical

implications which we discuss in Sections 4.2 and 4.3. Substituting the results from Lemma

2 into the single HJB equation (25) implies the principal’s value function V (t,W ) solves

0 = sup
at

Vt + at −
[
k

2
a2t −

ln (ηγ)

η
− 1

η
ln(−W )

]
+

1

2
(atkγηWσ)2 VWW

+

∫ T

t

R′(s− t)

(
as −

[
k

2
a2s −

ln (ηγ)

η
− 1

η
ln(−Ws)

])
ds

+
ln(−WT )

η
R′(T − t), (30)

subject to (26), the incentive compatibility condition (28), and the boundary condition:

V (T,W ) = B(T,W ) for all W. (31)

We guess and verify that V (t,W ) = At ln(−W ) +Bt, for some undetermined coefficients At

and Bt. Substituting this guessed V (t,W ) into (30) and matching the coefficients yields the

following solution to the optimal contract:

Proposition 3 If the principal has a time-difference discount function R(t − s) and the

agent’s discounting and preference follows that given in Assumptions 3, then under the op-

timal contract,

ψt = at =
1

k +K + ηk2γ2σ2
∫ t
0
[R(T − s) +R′(T − s)]ds

, (32)

where K is a constant of integration, and

ct =
k

2
a2t −

ln (γη)

η
− 1

η
ln(−Wt). (33)

Proposition 3 immediately implies the following results:

Corollary 1 The equilibrium effort path is monotonic if
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� R(s) +R′(s) < 0 ∀s ∈ [0, T ] (increasing path).

� R(s) +R′(s) > 0 ∀s ∈ [0, T ] (decreasing path).

The equilibrium effort path is non-monotone if the sum R(·) +R′(·) ever changes sign.

These features of the optimal contract demonstrate that the equilibrium path of the

agent’s actions is deterministic, driven by the discount function R and its first derivative

R′ only. Note that exponential discounting is also a special case of the time-difference

discount family. Thus, the equilibrium path of effort and contract incentive under exponential

discounting is always monotonic in time (increasing if r < 1 and decreasing if r > 1). In

the next subsection, we explore specific (time-inconsistent) examples in the time-difference

discount family and compare the resulting optimal contracts with that under exponential

discounting.

The theoretical predictions of Proposition 3 can be further sharpened by assigning explicit

functional forms to the discount function. In this paper we solve two specific examples with

wide economic applications: quasi-hyperbolic discounting (following Harris and Laibson,

2012), and anticipatory utility (following Loewenstein, 1987). We present the details of

the former case below and demonstrate how its predictions may shed light on empirical

observations on managerial compensation in practice. For the latter case we first demonstrate

how anticipatory utility leads to the specific discounting function above, and then derive and

discuss its properties. The derivation and discussion are straightforward following the general

results of Proposition 3 but are left in appendix in the interest of space.

4.2 Quasi-Hyperbolic Discounting

In this section we further explore a specific time-inconsistent discount function that belongs

to the time-difference family: the quasi-hyperbolic discounting, widely-featured in various

studies including O’Donoghue and Rabin (1999), Thaler and Benartzi (2004), Harris and

Laibson (2012), Jackson and Yariv (2014), Jackson and Yariv (2015), Bisin, Lizzeri, and

Yariv (2015), etc. Here, we follow Harris and Laibson (2012) and define a quasi-hyperbolic

discount function as a convex combination of a short-term discount function and a long-term

discount factor. Formally, we assume

Assumption 4 The principal has the following time difference discount function:

Rt(s) = R(s− t) = (1− β)e−(ρ+λ)(s−t) + βe−ρ(s−t) (34)

with β ∈ (0, 1) and γ > ρ+ λ.
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The representation above is a deterministic characterization of a principal who values

“near present” returns with a larger discount factor (discounted by e−ρ(s−t)), and “far future”

returns with a smaller factor (discounted by βe−ρ(s−t)). That is, the principal becomes less

patient over time. β < 1 captures the size of the drop in the discount factor in the far future.

The switch between the “near present” and the “far future” occurs stochastically at the rate

of λ, and the overall discount function Rt(s) incorporates this expected drop.

Because R(T − s) is an exponential function in s, substituting it back into (32) yields a

closed-form solution, which is given in Appendix A.6. This closed-form solution implies the

following analytical characterization of the properties of the optimal contract:

Proposition 4 Under Assumption 4, the optimal renegotiation-proof contract derived in

Proposition 3 has the following properties

1. If λ+ ρ ≥ 1, the incentive power ψt and wage ct of the optimal contract decreases if β

decrease, for all t and all Wt.

2. λ+ ρ < 1 then there exists T (λ, ρ) > 0 such that

(a) If T ≤ T (λ, ρ), the incentive power ψt and wage ct of the optimal contract de-

creases if β decrease, for all t and all Wt.

(b) If T > T (λ, ρ) then there exists t(λ, ρ) < T (λ, ρ) such that

i. The incentive power ψt and wage ct of the optimal contract increases if β

decrease, for all t < t(λ, ρ) and all Wt,

ii. The incentive power ψt′ and wage ct′ of the optimal contract decreases if β

decrease, for all t′ ≥ t(λ, ρ) and all Wt′.

The proposition demonstrates the effect of quasi-hyperbolic discounting and the associated

present bias on the dynamic characteristics of the optimal contract. In the case of expo-

nential discounting, the discount factor ρ is commonly interpreted as the death rate or the

hazard rate of the principal. Under quasi-hyperbolic discounting, the principal also faces

the additional risk λ of being replaced by a more impatient self. Thus, her overall survival

probability is negatively correlated with the sum λ + ρ. The higher the sum, the lower the

survival probability of the time-t principal. Note that this survival probability is not equiv-

alent to a higher discount factor but a combination of termination (standard discount) and

devaluation (hyperbolic drop).

A decrease in β, or a larger hyperbolic drop, has two effects: first, an internalization

effect, whereby the current self of the principal internalizes the decrease in patience of her

future self, and all her selves become more impatient; second, an equilibrium effect, whereby
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the principal front-loads contract incentives, because she correctly predicts that she cannot

credibly promise sufficient dynamic incentives in equilibrium in the future, and thus front-

loads the incentives before the impatient self arrives. If the survival probability is low

(λ + ρ ≥ 1) or the horizon T is short, the internalization effect dominates. The wage and

incentive power of the contract decrease unambiguously with the level of patience of the

replacing self. However, if T is long enough and the current self has a sufficiently high

probability of survival (λ + ρ < 1), the equilibrium effect results in the front-loading of

contract wage and incentive power. The prominence of the front-loading increases as β

decreases. That is, the more impatient the principal’s future self, the more her current self

shifts wage and incentive power of the contract towards the early period of the contracting

relationship while lowering them towards the end of the contracting horizon.

We also make the following observations regarding how close the optimal contract resem-

bles a time-consistent benchmark:

Proposition 5 Under Assumption 4 the optimal renegotiation-proof contract derived in

Proposition 3 has the following properties:

1. If β = 1 (or β = 0), the optimal contract is identical to that for a dynamically-

consistent principal with discount rate ρ (or ρ + λ), and the incentive power ψt is

(weakly) monotonic in time t.

2. As the contracting horizon becomes infinitely long (i.e., T → ∞), the optimal contract

converges to that for a time consistent-principal with discount rate ρ(λ+ρ)
ρ+βλ

.22

3. For every ρ ∈ (0, 1), the optimal incentive power ψt and the equilibrium actions at are

non-monotone in t as long as λ is high enough.

The first property is straightforward: if β = 1 (β = 0) the principal has the same discount

rate for “near present” payoff and “far future” payoff, which is equivalent to having expo-

nential discounting. Following Holmstrom and Milgrom (1987), the optimal incentive power

is monotonic in time, regardless of the contracting horizon.23

The second property demonstrates that the effect of quasi-hyperbolic discounting becomes

indistinguishable from exponential discounting if the time horizon becomes arbitrarily large.

If the contracting horizon is infinitely long, the solution to the dynamically inconsistent

22More precisely, a contract C converges to another contract C′ if the processes ψt, at, ct under C converge
pointwise to the processes under C′.

23Whether incentive power is monotonically increasing, decreasing, or constant over time is the result of
model-specific boundary conditions. See He (2011), He, Wei, Yu, and Gao (2017), and Marinovic and Varas
(2019) for some recent examples.
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problem agrees with that of a dynamically consistent one with exactly the same instanta-

neous utility function but a different exponential discount factor. Intuitively, as the horizon

increases, the problems faced by each of the principal’s time-t selves become more similar.

When the horizon is infinitely long, the principal’s problem becomes completely stationary.

Under quasi-hyperbolic discounting, stationarity is sufficient to ensure that the resulting

optimal contract converges to that of a principal with the exact same instantaneous utility

function but a different discount rate.

The third property highlights the possibility of non-monotonic incentive power under

finite horizon. Based on the first two properties, we know that the incentive power is (weakly)

monotonic in time without quasi-hyperbolic discounting or without a finite horizon. Under

quasi-hyperbolic discounting and a finite horizon, however, a “near-future” principal with

the short-term discount factor and a “far-future” principal with the long-term discount factor

may prefer different levels of incentive power. Suppose that the former prefers a high power

contract and the latter prefers low power. Because the switch between the two types of

principals occurs stochastically, the sophisticated “near-future” principal anticipates that

her less patient “far-future” self will arrive at some point. Thus, she designs a path of

incentive power that gradually decreases towards the level preferred by her “near-future”

self. However, at some point, as she approaches the end of the contracting horizon (the

deadline), the probability of the switch happening before the deadline decreases over time

as the contract “runs out of time.” Consequently, the principal resembles more closely her

“near future” patient self and reverts the incentive power of the contract until it converges to

the time-consistent benchmark level at the deadline, causing a U-shaped path. We refer to

this reverting of incentive power towards the end of the contracting horizon as the “deadline

effect”. The turning point is determined by λ, the arrival intensity of the drop in discount.

The higher the λ, the sooner the action path changes course. If λ is sufficiently low, the

drop in discount is very remote such that the “deadline effect” does not occur, and the path

of optimal incentive power converges to the (weakly) monotonic case.

We illustrate the properties above and the comparison between quasi-hyperbolic dis-

counting and the time-consistent benchmark in Figure 1.24

24When T is finite, discounting becomes irrelevant at t = T , and the optimal incentive power at that point
(ψT ) must be the same under both types of discounting. As T increases, the difference in the contracts
induced by the two types of discounting is pushed further to the future. When T → ∞, such difference is
pushed infinitely far away, and the optimal contract under quasi-hyperbolic discounting coincides with that
under exponential discounting but with a different discount factor (i.e., Property 2 in Proposition 5).
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Figure 1: These plots illustrate the paths of the incentive power (also the paths of agent’s actions given
Proposition 3) under the optimal contract. Blue lines indicate the paths under quasi-hyperbolic discounting
with η = 2, k = 1, σ = 1, β = 0.5, λ = 5, ρ = 0.5, γ = 1.5. Red lines indicate the paths under exponential
discounting with the same parameters except for ρ = 1. Each plot corresponds to a different time horizon
(different T ). If ρ > 1 (ρ < 1), the equilibrium path under exponential discounting would be monotonically
increasing (decreasing).
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Figure 2: The panel on the left illustrates the average CEO compensation delta as a function of the years
before CEO retirement. Data come from Compustat Execucomp from 1992 to 2018. The delta of each CEO
in each year is scaled by the value of delta in the final year. The panel on the right illustrates the percentage
of the promotion shares given to the sponsors of special purpose acquisition companies (SPAC) as a function
of the time before the deal deadlines from 2010-2019. Each circle represents one completed SPAC deal.
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4.3 Empirical Implications

In this section we briefly discuss the practical application of the theoretical results given in

Propositions 4 and 5 and illustrated in Figure 1. While those theoretical results summarize

both the recommended actions and the incentive power prescribed by the optimal contract,

the latter is arguably much easier to observe in practice. Furthermore, Property 2 of Propo-

sition 5 highlights that quasi-hyperbolic discounting and exponential discounting produce

different predictions only in the presence of a finite contracting horizon. Hence, we examine

below practical settings in which a contracting horizon can be fairly clearly identified and

the incentive power of the contract can be reasonably measured.

Our first example explores the time-series variations in CEO compensation delta as the

CEO approaches retirement. Delta measures the change in the CEO’s compensation if the

firm’s stock price changes by 1% and is a commonly used empirical proxy for the incentive

power of the CEO contract (e.g., Core and Guay (2002), Coles, Daniel, and Naveen (2006),

and the references within). We calculate the average CEO compensation data as a function of

the time until retirement for firms in the Compustat Execucomp database from 1992 to 2018.

Retirement in our sample is identified in two steps: first, if the variable reason (for turnover)

in Execucomp equals “retired”. However, less than 20% of the CEOs in the Execucomp

database are assigned an explicit value for this variable. Therefore, for the observations

with missing reason, we identify retirement as CEOs who are more than 65-year-old when

their contracts end and have not appeared to be CEOs for a different firm afterward in the

database. To eliminate the impact of outliers, we only keep CEOs whose tenure before the

retirement is longer than 6 years. Finally, because the CEOs of larger firms receive higher

compensation and thus have a mechanically higher delta, we scale the delta of each CEO

in each year prior to retirement by the delta of the final year of the CEO’s contract. We

then plot the sample-average delta as a function of the time before retirement in the left

panel of Figure 2. As the plot shows, on average, compensation delta is constant except in

the two years before retirement, where delta declines significantly. This pattern illustrates a

clear “deadline” effect in contrast to the prediction under exponential discounting shown in

Figure 1 but is consistent with the prediction based on quasi-hyperbolic discounting.

Another setting to which our theoretical predictions might by applicable is the incentives

to the managers of special purpose acquisition companies, or SPACs. A SPAC is a shell

company listed on a public exchange without any concrete business. Its sole purpose is to

find and merge with a private company and take the latter public, and its popularity has

exploded since the outbreak of the coronavirus pandemic. The SPAC managers, known as

the sponsors, are delegated with the task of finding the private company target to merge

with, and their effort in this process is compensated with a fraction of the SPAC shares.
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These promotion shares can therefore be regarded as the sponsor’s incentives similar to the

role of inside equity in dynamic moral hazard models (e.g., DeMarzo and Sannikov, 2006).

The sponsor is typically given two years after the SPAC IPO to find and complete the merger.

Otherwise, the SPAC is dissolved and the capital returned to the investors. The deadline

can be extended following majority shareholder approval and proper filing with the SEC,

which means that the actual deadline is publicly known and observable in the data. Using

hand-collected data from the SEC filings, we plot the percentage of the sponsor’s promotion

shares as a function of the time before the deadline in the right panel of Figure 2 for 102

complete SPAC combos during 2010 and 2019. As the plot shows, in most deals the incentive

shares are 20% according to the industry standard. However, there are substantial variations

especially near the deadline, which is once again more consistent with the predictions based

on quasi-hyperbolic discounting.25

5 Conclusion

Non-exponential discounting has been widely observed in practice and extensively studied

in economic research. However, dynamic moral hazard and long-term contracting between

sophisticated parties with non-exponential discounting has thus far eluded formal analysis

due to several challenges. First, individuals with non-exponential discounting make dynam-

ically inconsistent plans, and what currently appears optimal may become sub-optimal in

the future. In such a scenario, what is the appropriate notion of optimality? Moreover,

how does the contract provide incentive for a dynamically inconsistent agent, and how to

ensure that a contract agreed by the agent and the principal today will actually be carried

out or renegotiated in the future after their preferences have changed? Finally, does a long-

term optimal contract always exist? If so, how is such a contract different from the optimal

contract under exponential discounting?

In this paper, we answer these questions by establishing a broad framework of an incen-

tive compatible, renegotiation-proof, optimal long-term contract under dynamically inconsis-

25The consistency with the theoretical predictions notwithstanding, the empirical patterns documented in
Figure 2 should not be viewed as definitive proofs for the validity of the model. Our theoretical results are
derived under the assumption that the principal has quasi-hyperbolic discounting, which is possible when
the principal is represented by the board of directors or a group of investors (Jackson and Yariv, 2015).
However, whether quasi-hyperbolic discounting is an accurate summary of the average board of directors for
firms in the Excucomp database or the SPAC investors requires substantial empirical work and is beyond
the scope of this paper. It is also possible to explain the specific patterns shown in Figure 2 with reasons
other than quasi-hyperbolic discounting. For example, the precipitous drop in the incentive power for the
SPAC sponsors near the deadline could be due to the sponsors taking a cut of their own pay in order to
push the proposed deals through. Overall, we urge caution in interpreting any empirical observations based
solely on the predictions of this model.
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tent preferences resulting from non-exponential discounting. We formulate the contracting

problem as a dynamic, intra-personal game played among the agent, the principal and their

respective future “selves”. This allows us to derive the optimal contract as the equilibrium of

intra-personal game and prove its existence. We demonstrate the applicability of our general

framework through the example of time-difference discount family, which yields closed-form

solutions and generates testable implications, such as the precise impact of the “deadline

effect” on the incentive power and the compensation scheme of the optimal contract.

The agency friction of our general framework is adopted from the dynamic hidden effort

problem in Sannikov (2008). A related strand of literature formulates the agency friction

as a cash-flow diversion (CFD) problem. The analytical tools developed in this paper can

be easily adapted to CFD problems and their various extensions to highlight the impact of

non-exponential discounting on a number of applications, including but not limited to secu-

rity design (Biais, Mariotti, Plantin, and Rochet, 2007), risk management (Biais, Mariotti,

Rochet, and Villeneuve, 2010), liquidity management (Bolton, Chen, and Wang, 2011), and

resource allocation (Feng and Westerfield, 2021).

Our framework can be expanded in different directions. In particular, the extended HJB

system derived in this model and its variations can arise in many dynamically inconsistent

optimal control problems for reasons other than non-exponential discounting. Our main

theorem, which bridges dynamically inconsistent control problems with non-atomic games,

may be modified to establish the solutions to these problems at both theoretical and practical

levels. Examples of the practical applications include but are not limited to ambiguity, habit

formation and mean-variance risk preferences. Finally, exploring the impact of bargaining

power during the renegotiation process under time-inconsistent preferences can also yield

fresh insights. We leave these topics for future research.

A Appendix

A.1 Proof of Lemma 1

Consider a contract C offered by the principal. In general, the consumption and action paths

induced by C could depend on the entire history of the outputs. To resolve the history

dependence, we follow Williams (2011, 2015) and introduce a change of the probability

measure. We differentiate using the conditional expectations EZâ
and EZ0

, respectively.

That is, the optimal control problem of the agent under the new measure induced by Z0
t can
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now be formulated as follows:

J(t,Γ) = sup
âs, s∈[t,T ]

EZ0

[∫ T

t

Γsr
t(s)u(cs, âs)ds+ ΓT r

t(T )U(cT )

]
, (35)

dΓs =

(
âs
σ

)
ΓsdZ

0
s , Γ0 = 1. (36)

where

EZ0

[∫ T

t

rt(s)u(cs, âs)ds+ rt(T )U(cT )

]
= EZâ

[∫ T

t

Γsr
t(s)u(cs, âs)ds+ ΓT r

t(T )U(cT )

]
.

Note that, although the optimal control problem is still time-inconsistent, the change of

measure resolves the history dependence. This is a common technique used in dynamic

contracting studies especially those with time-consistent preference (i.e., exponential dis-

counting) and persistent private information, such as (in addition to Williams, 2011, 2015)

He, Wei, Yu, and Gao (2017), Marinovic and Varas (2019), Bloedel, Krishna, and Strulovici

(2020), Feng (2021), etc.

Now consider an arbitrary progressively-measurable control process ât. Under ât, the

evolution of dΓs =
(
âs
σ

)
ΓsdZ

0
s is an Ito process, with a measurable diffusion coefficient, thus

by Theorem 3.6 and in particular by Corollary 3.7 of Brunick and Shreve (2013) it is without

loss to consider the SDE dΓs = E
((

â2s
σ2

)
Γ2
s|Γs

)
dZ0

s instead, where the term E
((

â2s
σ2

)
Γ2
s|Γs

)
only depends on (s,Γ) because it is a conditional expectation. This representation is unique

due to Corollary 3.13 of Brunick and Shreve (2013), and âs(s,Γ) can simply be backed out by

taking the square root and multiplying by Γ/σ. Thus, any measurable control is equivalent

to a Markov control. We can then apply the following theorem of Yan and Yong (2019) to

the time-inconsistent control problem defined by (35) and (36):

Theorem 2 (Yan and Yong 2019) Given a contract C(a, c) suppose that (â,Γ) is an agent

intra-personal equilibrium pair (where each agent takes the action suggested by the principal)

and suppose that for any given t ∈ [0, T ), the first order adjoint processes W (·, t), ψ̃(·, t) and
second order adjoint processes P (·, t),Λ(·, t) are adapted solutions to the following BSDEs:

dW (s, t) = −
(
ât
σ
ψ̃(s, t) + rt(s)u(cs, âs)

)
ds+ ψ̃(s, t)dZ0

s s ∈ [t, T ],

W (T, t) = rt(T )U(cT ),

dP (s, t) = −

((
ât
σ

)2

P (s, t) + 2
ât
σ
Λ(s, t)

)
ds+ Λ(s, t)dZ0

s s ∈ [t, T ],

P (T, t) = 0,
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then almost surely for any deviation ã given the suggested path a = â we have the following

global form of Pontyagrin maximum principle26

0 ≤ lim
ε→0

1

ε
Et

∫ t+ε

t

〈
ψ̃(s, t),Γs

(
ã− â

σ

)〉
ds+ rt(t)Γt (u(ct, ã)− u(ct, â))

+
1

2

(
Γt
ã− ât
σ

)2

P (t, t). (37)

If the agent has exponential discounting, there would be a single adjoint process. Instead,

we have a flow of adjoint processes, which jointly describes how the different selves of the

agent evaluate the payoff from the contract. Taking the limit as ε→ 0 yields

ψ(t, t)Γt

(
ã− â

σ

)
+ rt(t)Γt (u(ct, ã)− u(ct, â)) +

1

2

(
Γt
ã− ât
σ

)2

P (t, t) ≤ 0. (38)

We can now define the Hamiltonian system H as

H ≡ H − 1

2

(
ât
σ
Γt

)2

P (t, t) +
1

2

(
ãt − ât
σ

Γt

)2

P (t, t). (39)

where H ≡ −rt(s)Γsu(cs, âs) + Γsψ̃(t, s)
âs
σ

denotes the local Hamiltonian. Then, (38) is

equivalent to the maximum of H by choosing ã. Since [a, ā] is convex and the coefficients

of Γ, u and r(t, s) are Lipschitz continuous, maximizing H is equivalent to maximizing H.27

The first-order condition of H with respect to ât thus yields the incentive compatibility (IC)

condition of the agent at time t:

ua(c, â) =
ψ̃(t, t)

σ
= ψt. (40)

Next, we derive the evolution of the agent’s continuation utility. We write the equilibrium

value function in the integral form as follows:

W̃ (k, t) = rt(T )U(cT )−
∫ T

k

(
âs
σ
ψ̃(s, t) + rt(s)u(cs, âs)

)
ds+

∫ T

k

ψ̃(s, t)dZ0
s .

26In the original reference the term 1
2 in front of the trace term is missing, which is a typo. See Wang and

Yong (2021), Proposition 2.3 for a corrected version of this result.
27This follows since H and H have the same generalized Clark gradient in ã. For this equivalence see page

138 Lemma 5.1 of Yong and Zhou (1999), for a slightly more detailed proof see Proposition 3.1 of Djehiche
and Huang (2016).

38



Taking k → t, we have

W̃ (t, t) = rt(T )U(cT )−
∫ T

t

(
âs
σ
ψ̃(s, t) + rt(s)u(cs, âs)

)
ds+

∫ T

t

ψ̃(s, t)dZ0
s .

Following Yan and Yong (2019), we can define the following Type-I backward stochastic

Volterra integral equation (BSVIE):

W (t) = rt(T )U(cT )−
∫ T

t

(
âs
σ
ψ̃(s, t) + rt(s)u(cs, âs)

)
ds+

∫ T

t

ψ̃(s, t)dZ0
s ,

andW (t) = W̃ (t, t) andW (t) = J(t, Γ̂) for all t as stated by Yan and Yong (2019). Replacing

Z0
s with Z

a
t yields the representation provided in Lemma 1. Note that âs

σ
ψ̃(s, t)+rt(s)u(cs, âs)

is continuously differentiable, progressively measurable, and uniformly Lipschitz, because u

and r are also uniformly Lipschitz, and all other terms are linear. Therefore the conditions

in Theorem 4.3 in Hernández and Possamäı (2021) apply and the above Type-I BSVIE is

well-posed.

Remark 5 Before proceeding we need to establish that W (t) above can be used as the state

variable to for the principal’s problem. Since each agent t only acts once, it is natural to

find a forward representation for W (t). In particular, we use the decoupling field of the

forward-backward stochastic Volterra integral equation (FBSVIE) to pin down the evolution

of W (t). Under Lipschitz continuity of both the forward and backward coefficients, Theorem

1 of Wang and Yong (2019b) shows that decoupling field θ can be represented as follows:

Theorem 3 (Wang and Yong 2019) Under Assumption 2, the integral valued process

W (t) has a unique representation as a diffusion θ(t, t,Γt), where θ(t, s,Γ) is the unique,

continuous solution to the following partial differential equation (PDE):

θs(t, s,Γs) +
1

2

(
âs
σ
Γs

)2

θΓΓ(t, s,Γs) + rt(s)u(cs, âs) = 0, (41)

θ(t, T,ΓT ) = rt(T )U(cT )ΓT . (42)

This theorem requires two conditions noted as H1 and H2 in Wang and Yong (2019b).

Here, H2 is directly satisfied by the boundedness of the derivative of the utility function,

and the linear growth condition in H1 is also satisfied because the difference in volatility of

the Γ process is always linearly bounded (by āΓ). Therefore, the above PDE has a unique

continuous solution, which is the decoupling field of the BSVIE. Since θ(t, t,Γ) = W (t), Ito’s
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lemma implies the following diffusion representation of W (t):

dW (t) =

(
θ1(t, t,Γt) + θ2(t, t,Γt) +

1

2

(
ât
σ
Γt

)2

θΓΓ(t, t,Γt)

)
dt+

ât
σ
ΓtθΓ(t, t,Γt)dZ

0
t

= (θ1(t, t,Γt)− u(ct, ât)) dt+
at
σ
ΓtθΓ(t, t,Γt)dZ

0
t . (43)

where second equality follows from Equation 39. Here, θ1(θ2) denotes the partial derivative

with respect to the first (second) argument. θ1(t, t,Γt) and θΓΓ are the standard components

regardless of time-consistency while θ2(t, t,Γt) is the unique term capturing the valuation of

the agent’s different selves under time-consistent preferences.

A.2 Proof of Proposition 1

Since C ′ = {c′t, a′t}t∈[0,T ] is a feasible renegotiation, it must be incentive compatible, and

EC′

t

[∫ T

t

rt(s)u(c′s, a
′
s)ds+ rt(T )U(c′T )

]
≥ EC

t

[∫ T

t

rt(s)u(cs, as)ds+ rt(T )U(cT )

]
.

For any given renegotiation C ′, the principal-preferred alternative by definition C ′′ must

incentivize the same action paths as C ′ but implies the lowest W such that the renegotiation

is still feasible. Therefore, if the weak inequality holds with equality then the principal-

preferred alternative is the feasible renegotiation itself. If the inequality is strict then let

k > 0 be the difference in utility from agent t’s perspective, that is

k = EC′

t

[∫ T

t

rt(s)u(c′s, a
′
s)ds+ rt(T )U(c′T )

]
− EC

t

[∫ T

t

rt(s)u(cs, as)ds+ rt(T )U(cT )

]
.

Now define C ′′ as follows: for any potential history HT up to time (T,FT ), we define c
′′
T such

that rt(T )U(c′′T ) = rt(T )U(c′T ) − k. Such c′′T exists and c′′T < c′T because U is continuous,

increasing in c and unbounded below. For all t < T , choose {c′′t , a′′t }t∈[0,T ] such that (c′t, a
′
t) =

(c′′t , a
′′
t ). Observe that compared to C ′, the agent’s selves realized utility under C ′′ is lower by

a constant amount. This amount equals exactly k for the t-self. Given that C ′ is incentive

compatible, the new contract C ′′ is also incentive compatible.

A.3 Proof of Proposition 2

Pick any {a1s, c1s}s∈[t,T ) ∈ ξt(W1) that corresponds to an arbitrary history from t to T . Because

u is continuous, increasing in c and unbounded, there exists c2T such that rt(T )U(c2T ) =

rt(T )U(c1T ) + W1 − W2 for every possible c1T . Then, let (c2t , a
2
t ) = (c1t , a

1
t ) for all t < T .
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Observe that compared to the contract (c1t , a
1
t )t∈[0,T ], the contract (c

2
t , a

2
t )t∈[0,T ] changes each

of the agent’s selves’ realized utility for every path of history by a constant amount. This

amount equals exactly W1 −W2 for the t-self. Given that (c1t , a
1
t ) is incentive compatible,

the new contract (c2t , a
2
t ) is also incentive compatible. Furthermore, at time t, the contract

(c2t , a
2
t ) delivers W2 and induces the path {c1s, a1s}s∈[t,T ]. Thus, {c1s, a1s}s∈[t,T ] ∈ ξt(W2). An

identical argument (i.e., switching the superscript 1 and 2 above) shows that any element of

ξt(W2) is also an element of ξt(W1).

A.4 Proof of Theorem 1

We first prove the existence of a solution to the extended HJB system, and then provide a

verification theorem.

A.4.1 The Existence of a Solution to the Backward System

Begin with an arbitrary incentive compatible contract C̆. For each (t,W ), the backward

equation of the HJB system

AC̆f tC̆(t,W ) +Rt(t)(ăt − c̆t) = 0,

is a semi-linear parabolic partial differential equation. If it has a solution f tC̆(t,W ), then for

every s there is a path of Ws that reaches W by time t.28 Thus,

f tC̆(t,W ) = f tC̆(T,WT )−
∫ T

t

Rt(s)(ăs − c̆s)ds−
∫ T

t

Y C̆
s dZs,

for any incentive compatible C̆ and some adapted process Y C̆. A solution to the backward

system corresponds to a pair of processes f tC̆(t,W ) and Y C̆
t . However, notice that for a

given arbitrary incentive compatible contract C̆, action ăt is already pinned down by the IC

condition. In particular, according to Assumption 2 for any given c̆t, ψ̆t, andWt, the incentive

compatible action ăt is unique. Moreover, given contract C̆, the proof of Lemma 1 shows

that the backward system is accompanied by a forward system (43), where θ denotes the

decoupling field of the agent’s BSVIE. Also note that f tC̆(t,W ) and Y C̆
t do not appear in the

forward system, hence this is a decoupled forward-backward stochastic differential equation

(FBSDE).Thus, proving the existence of a solution to the backward system is equivalent to

showing that for any incentive compatible control C̆, the FBSDE system is well-posed and

therefore has a unique and continuous solution.

28The subscript C̆ is used to emphasize the dependence on the control C̆.
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Given that the system is decoupled, we first write down the generator of the backward

system. Since we only consider Markovian controls that satisfy incentive compatibility, the

generator only depends on the forward part (i.e., Rt(s)(ăs − c̆s)). Based on Cvitanic and

Zhang (2012), Section 9.5, the FBSDE is well-posed if both the forward and backward compo-

nents have unique solutions and the solution to the forward component satisfies the Markov

property. For the forward component, the proof of Lemma 1 shows that the accompanying

Type-I BSVIE is well posed and has a unique continue solution. Then, Theorem 3 implies

that this well-posed Type-I BSVIE has a unique representation as a diffusion (hence Marko-

vian) identified via the decoupling field. For the backward component, observe that it does

not have the backward terms in the generator but only the forward ones, and the generator

Rt(s)(ăs− c̆s) is uniformly Lipschitz continuous in f tC̆(t,W ) and Yt. Thus, by Theorem 9.3.5

in Cvitanic and Zhang (2012) the backward system has a unique solution.29 Finally, by

Theorem 3, the decoupling field is C1,2, and since the discount function is assumed to be C3,

the generator itself is C3. Thus, by Corollary 2.9 of Pardoux and Peng (1992), f tC̆(t,W ) has

continuous partial derivatives of order 1 and 2 in t and W , respectively.30

A.4.2 Finding a Fixed Point to The Extended HJB System

The preceding argument proves that for any incentive compatible control C̆ there exists a

unique process f tC̆(t,W ) satisfying the backward system. Furthermore, if C̆ is optimal for

any time t under the optimal controls we have:

V (t,W ) = f tC̆(t,W ) = fC̆(t,W, t), (44)

AC̃V (t,W ) = AC̃fC̆(t,W, t) ̸= AC̃f tC̆(t,W ). (45)

The second line stems from the fact that for AC̃V (t,W ) and AC̃fC̆(t,W, t), the infinitesimal

generator AC̃ changes both the self and time, whereas AC̃f tC̆(t,W ) is taken from the perspec-

tive of a fixed self.31 Therefore, the first and last terms in (22) cancel, and the problem of

the principal’s t-self is reduced to the following static optimization problem:

sup
C̃
{(ãt − c̃t)−AC̃f tC̆(t,W )} = 0, (46)

29The fact that backward terms do not appear in generator is not surprising when the backward system
is a sort of “continuation utility”, see Duffie and Epstein (1992) or El Karoui, Peng, and Quenez (1997).

30Since the decoupling field is C1,2 by construction we do not need to make further assumptions about
the drift and variance of the forward process.

31Note that AC̃V (t,W ) ̸= AC̃fC̆(t,W, t) under any incentive compatible but sub-optimal contract.
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for each W . For any given control C̆, the solution to the equation above generates another

control C̃ using the value function generated from the backward system, f tC̆(t,W ).

Next, we define a probability space (Ω,P ,F) where Ω = Z[0,T ] and Z is the Brownian

motion. We denote ω as an arbitrary realized path of Zt. Let S = A × C × R denote the

space of strategies, [0, T ] the space of players, and P the common knowledge of all players.

In particular, we treat the incomplete observations of the realized path by each player as

their differential information. The information of a player t is a sub σ-algebra of F , which

is denoted by Ft, and corresponds naturally to the filtration F given that players’ different

information is a result of the difference in time.

Let M denote the space of all measures on S. Let S denote the set of all measurable

decision rules δ, δ : Ω → M (i.e., players are allowed to randomize). We equip S with the

weak topology, which is the weakest topology in which all functions identified as follows are

continuous on S:

δ →
∫
Ω

ϕ(ω)

[∫
S

c(s)δ(ω)ds

]
P (dω), ϕ ∈ L1(Ω,P ,F), c ∈ CB(S).

Here, L1(Ω,P ,F) denotes the space of P-integrable functions and CB(A) the space of

bounded and continuous functions. We equip (Ω,P) with the usual L1 norm.

With this notation, a pure strategy profile is a distribution over S, and we denote the

set of all probability distributions over S as M(S). For each t, we define St ⊂ S as the set

of all Ft measurable decision rules δ, δ : Ω → M.

To proceed, define the set

D = {(Ft, δ) : Ft ∈ {Ft}t∈[0,T ] and δ ∈ St}.

Since {Ft}t∈[0,T ] is a filtration, F is the appropriate σ-algebra in which the conditional

expectations are measurable. Due to Lemma 2 of Balder (1991), D is F ×B(S) measurable

and St is a compact subset of S for every Ft ∈ {Ft}t∈[0,T ].32 In other words, player-t only

uses information from Ft when selecting a strategy from D.

Note that by definition any contract C defined in the main text satisfies C ∈M(S) with

the additional property that {at, ct} ∈ St ∀t, i.e., player-t indeed only uses information from

Ft. For any given t, ω, and Ft, the backward system for any contract C yields:

f tC(t,W ) = EC
t,W

[∫ T

t

Rt(s)(as − cs)ds+B(t,WT )

]
.

32Where B(S) is the Borel sigma algebra defined on S.
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The above equation only depends on C and ω and is calculated according to the information

at Ft. Meanwhile, for any player t, any δ ∈ S and h ∈ M(S), we can define the utility

function as:

u(t, δ, C) = E
[
(a(δ)− c(δ))−A(a(δ),c(δ))f tC(t,W )|Ft

]
.

Observe that ut is continuous in both its arguments and is measurable by definition.

Furthermore, f is continuous and differentiable since the backward system is well-posed.

Because f tC(t,W ) incorporate the randomness generated by Zt, a player is identified by

the characteristics (t,Ft), where t corresponds to the player’s identity and Ft the player’s

information. In other words we interpret the uncertainty of the contracting problem as the

following structure of the intra-personal game: first, an entire path of Z is realized. Then,

there is a population [0, T ] of non-atomic players, among which a player t is endowed with

information Ft.

Analogous to Balder (1991), we define the utility function for the game as a function

U : [0, T ] × D ×M(S) → R. Thus, a game is identified by ([0, T ] × F , µ, {St}t∈[0,T ], U},
where [0, T ]×F denotes the set of characteristics, µ a given distribution over characteristics,

St the set of strategies available to a player with characteristics (t,Ft), and U the utility

function for the game.

Next, we can identify a characteristic - strategy (CS) distribution, which is a distri-

bution over [0, T ] × D specifying how the possible characteristic-strategy combinations are

distributed in the game:

Definition 7 A CS distribution λ is an equilibrium if

� The marginal of λ|[0,T ]×F = P × λTU ,

� λ({((t,Ft), δ) ∈ [0, T ]×D : δ ∈ argmaxSt u(t, δ, λ|S)}) = 1,

where λTU denotes the uniform distribution over [0, T ].

In words, if λ is a CS distribution, then the respective marginals of the distribution λ|[0,T ]×F

coincide with the distribution over characteristics and λ|S coincides with a distribution over

the strategies. Observe that among players of different types, the distribution over [0, T ]×F
is identified by the filtered probability space generated by Z[0,T ]. Because each principal

is weighted equally, the distribution over the player type must be uniform. Then, we can

invoke Theorem 1 of Balder (1991), which states that the non-atomic game has an equilibrium

distribution if the following conditions hold:

1. The metric space S of strategies is separable and complete.
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2. St is compact for every agent.

3. U(t, ·, ·) is upper semi continuous.

4. U(t, s, ·) is continuous.

5. U(·, ·, ν) is measurable.

We verify that all of these conditions are met in our setting. First, S is complete, separable,

and compact, as noted above. Second, U(t, ·, ·) is continuous in both arguments. Finally,

U(·, ·, ν) is measurable for all ν ∈ S. Therefore, an equilibrium distribution exists, which

implies that there exists a contract C∗ such that

(a∗, c∗) ∈ arg sup
C̃
{ãt − c̃t −AC̃f tC∗(t,W )} = 0.

for every (t,W ). Thus, there exists a solution to the extended HJB system.

A.4.3 Verification Theorem

We divide the verification theorem into two parts. First, we prove that if a contract C
solves the extended HJB system, it must be an equilibrium of the game. Then we prove the

reverse: if a contract C is an equilibrium of the game, then it must also solve the extended

HJB system. The following proposition formalizes the verification result.33

Proposition 6 Assume a, c, V and fC are C2 with respect to W and C1 with respect to t,

then the following statements hold.

1. If a contract C solves the extended HJB equation, then it must be an equilibrium.

2. If a contract C is an equilibrium, then it also solves the extended HJB equation.

Proof of the first statement: Applying Ito’s formula to f sC(t,W ) in (24) and using the

boundary condition at time T , we obtain the following representation

f sC(t,W ) = EC
t,W

[∫ T

t

Rs(r)(ar − cr)dr +B(t,WT )

]
.

33A recent study by Lindensjö (2019) provides a similar verification theorem. However, the model in
Lindensjö (2019) does not involve any moral hazard problem. The state variable evolves exogenously, and
only terminal consumption is allowed. In contrast, we consider a principal-agent problem in which the
agent’s continuation utility evolves endogenously in the equilibrium, and allow for both flow and terminal
consumption in the contract.
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From the extended HJB system

0 = ACV (t,W ) +ACf tC(t,W )−ACfC(t,W, t) + at − ct, (47)

0 = at − ct +ACf tC(t,W ), (48)

implying that ACV (t,W ) = ACfC(t,W, t) for all (t,W ). Since V is smooth, by Ito’s lemma:34

EV (T,WT ) = V (t,W ) + E

[∫ T

t

ACV (s,Ws)ds

]
,

which can be re-written as

EV (T,WT ) = V (t,W ) + E

[∫ T

t

ACfC(s,W, s)ds

]
.

By applying the same reasoning as above to f t(t,W ) and using the boundary conditions for

V and f time T, we conclude that V (t,W ) = fC(t,W, t).

Next, we show that C is an equilibrium. Suppose the agent uses an arbitrary control law

C̆ over period length ∆ > 0. Let fC∆(t,W, t) be the payoff to the principal under C∆. For C
be an equilibrium, the following condition

lim inf
∆→0

fC(t,W, t)− fC∆(t,W, t)

∆
≥ 0. (49)

must hold for any C∆. Note that,

fC(t,W, t)− fC∆(t,W, t)

∆
= (at − ct)− (a∆t − c∆t )−AC∆f tC(t,W ) +ACf tC(t,W ).

Since C solves V (t,W ) in (22), (at− ct) +ACf tC(t,W, t) = 0. Thus, (a∆t − c∆t ) +AC∆f tC(t,W )

must be negative, which implies fC(t,W, t) − fC∆(t,W, t) > 0 is positive. Hence, contract C
must be an equilibrium.

Proof of the second statement: If we can show that Ĉ is a continuous equilibrium contract

and the corresponding value function V and f are sufficiently smooth (i.e., V, f ∈ C2), then

V solves the extended HJB equation. To do so, we first prove two auxiliary results. For a

given contract C, we define fC(t,W, t), VC(t,W ), f tC(t,W ) as in (7), (9), and (10), respectively.

Using these notation we can reformulate our objective as the following Feynman-Kac form:

34See Strulovici and Szydlowski (2015) for the sufficient conditions for the smoothness of the value function
and the existence of optimal controls with time-consistent preferences.
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Lemma 3 Consider a continuous contract C and moreover assume f tC is twice continuously

differentiable and L2 integrable. Then for every s ∈ [0, T ] f sC is a solution to the following

PDE

ACf sC(t,W ) +Rs(t) (at − ct) = 0 (t,W ) ∈ [0, T ]× R.

Proof of Lemma 3: By construction,

f sC(t,W ) = EC
t,W

[∫ T

t

Rs(k) (ak − ck) dk +B(t,WT )

]
, (50)

with the boundary condition f s(T,W ) = B(s,W ), and

0 = EC
t,W

[∫ t+∆

t

Rs(r) (ar − cr) dr

]
+ EC

t,W [f sC(t+∆,Wt+∆)]− f sC(t,W )

for a sufficiently small ∆. Applying Ito’s formula to the term f sC(t+∆,Wt+∆) yields

0 = EC
t,W

[∫ t+∆

t

Rs(r) (ar − cr) dr

]
+ f sC(t,W ) + EC

t,W

[∫ t+∆

t

ACf sC(r,Wr)dr

]
+ EC

t,W

[∫ t+∆

t

∂2f

∂2W
(σC

W )2dZr

]
− f sC(t,W ).

Simplifying and using the fact that the expectation of an Ito integral is equal yields

0 = EC
t,W

[∫ t+∆

t

Rs(r) (ar − cr) dr

]
+ EC

t,W

[∫ t+∆

t

ACf sC(r,Wr)dr

]
.

Dividing both side to ∆ and taking the limit ∆ → 0 we have Rs(t)(at−ct)+ACf sC(t,W ) = 0.

Lemma 3 implies the next result:

Lemma 4 For any contract C and deviation C∆,

lim
∆→0

fC (t,W, t)− fC∆ (t,W, t)

∆
= −(a∆t − c∆t )−AC∆f tC(t,W ).

Proof of Lemma 4: Ito’s lemma implies:

lim
∆→0

fC (t,W, t)− fC∆
(t,W, t)

∆
= (at − ct)− (a∆t − c∆t )−AC∆f tC(t,W ) +ACf tC(t,W ),

= −(a∆t − c∆t )−AC∆f tC(t,W ),

where the second line follows Lemma 3.

We now use the two results to complete the proof of Part 2. If Ĉ is an equilibrium
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contract, then AC̃VĈ(t,W ) = AC̃fĈ(t,W, t). Let Ĉ∆ denote an arbitrary deviation from Ĉ
over ∆ amount of time. Then, Lemma 4 implies

lim
∆→0

fĈ (t,W, t)− fĈ∆ (t,W, t)

∆
= −(â∆ − ĉ∆)−AĈ∆f tĈ(t,W ) ≥ 0.

where the last inequality applies because Ĉ is an equilibrium contract. Therefore, (â∆ −
ĉ∆) +AĈ∆f tC̆(t,W ) ≤ 0., and Ĉ∆ does not not satisfy (22). In other words,

AC̃VĈ(t,W ) + (ãt − c̃t)−AC̃fĈ(t,W, t) +AC̃f tĈ(t,W ) ≤ 0, ∀(t,W ) .

for any other contract C̃ ̸= Ĉ,
Finally, we verify that C solves the extended HJB system. By construction, AĈV (t,W ) =

AĈfĈ(t,W, t), and (ât − ĉt) +AĈf tĈ(t,W ) = 0. Therefore,

AĈV (t,W ) + (ât − ĉt)−A,ĈfĈ(t,W, t) +AĈf tĈ(t,W ) = 0.

This completes the proof of the second statement in Proposition 6.

A.5 Time-difference Discounting Functions

A.5.1 Proof of Lemma 2

The proof is analogous to the proof in Appendix A of Marinovic and Varas (2019) and is

hence omitted.

A.5.2 Proof of Proposition 3

First, u(c, a) = rW (from Lemma 2) implies that

c =
k

2
a2 − ln (ηγ)

η
− 1

η
ln(−W ). (51)

Next, notice (also from Lemma 2) that dWt is a martingale with no drift. Therefore,

ACV =
1

2
(atkγηWσ)2 VWW . (52)
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Replacing ACV and cs in the single HJB equation (25) with (52) and (51) implies that the

value function V (t,W ) solves

0 = sup
at

Vt + at −
[
k

2
a2t −

ln (ηγ)

η
− 1

η
ln(−W )

]
+

1

2
(atkγηWσ)2 VWW

+

∫ T

t

R′(s− t)

(
as −

[
k

2
a2s −

ln (ηγ)

η
− 1

η
ln(−Ws)

])
ds+

ln(−WT )

η
R′(T − t),

subject to (26), the incentive compatibility condition (28), and the boundary condition:

V (T,W ) = B(T,W ) for all W. (53)

Conjecture and verify that the principal’s value function has the following functional form:

V (t,W ) = At ln(−W ) + Bt, with the boundary condition AT = 1
η
. Given the conjecture,

V̇t = Ȧt ln(−W )+Ḃt, VW = At

W
, VWW = − At

W 2 . Substituting these back into the extended HJB

system yields: at =
1

k+k2η2γ2σ2At
. Meanwhile, collecting the log terms in the value function

and using R(0) = 1 yields

Ȧt =
1

η
(R(T − t) +R′(T − t)) . (54)

The boundary condition AT = 1
η
implies

At =
1

η

∫ t

0

(R(T − s) +R′(T − s)) ds+K, (55)

where K = 1
η
(2−

∫ T
0
R(T − s)ds−R(T )). Plugging this back in to at yields:

at =
1

k +K + ηk2γ2σ2
[∫ t

0
(R(T − s) +R′(T − s)) ds

] . (56)

A.6 Proofs for the Case of Quasi-Hyperbolic Discounting

Without the loss of generality we assume k = 1. The proof for k ̸= 1 is identical in spirit.

First, substituting R and R′ with the quasi-hyperbolic discounting function to (54) yields:

Ȧt =
1

η

(
β(1− ρ)e−ρ(T−t) + (1− β)(1− (ρ+ λ))e−(ρ+λ)(T−t)) , (57)

with boundary condition AT = 1
η
. Integrating the above equation yields:

49



At =
1

η

(
β(1− ρ)

ρ
e−ρ(T−t) + (1− β)

1− (ρ+ λ)

ρ+ λ
e−(ρ+λ)(T−t) +

2ρ(ρ+ λ)− (βλ+ ρ)

ρ(ρ+ λ)

)
.

Thus equilibrium action is thus given by:

at =
1

1 + η2γ2σ2
(

1
η

(
β(1−ρ)

ρ
e−ρ(T−t) + (1− β) 1−(ρ+λ)

ρ+λ
e−(ρ+λ)(T−t) + 2ρ(ρ+λ)−(βλ+ρ)

ρ(ρ+λ)

)) .
A.6.1 Proof of Proposition 4

First, note that ψt = at =
1

1+η2γ2σ2At
. Hence ∂ψt

∂β
has the opposite sign of ∂At

∂β
, and the latter

can be solved explicitly:

∂At
∂β

=
1

η

(
(1− ρ)

ρ
e−ρ(T−t) − 1− (ρ+ λ)

ρ+ λ
e−(ρ+λ)(T−t) +

−λ
ρ(ρ+ λ)

)
,

= −((ρ+ λ)(ρ− 1))(e−ρ(T−t) − e−(ρ+λ)(T−t)) + λ(1− e−(ρ+λ)(T−t))

ρ(ρ+ λ)
.

The sign of the numerator depends on the parameter values. We discuss their different

scenarios below:

Case 1 ρ+ λ ≥ 1. There are two sub-cases in this scenario: i): ρ ≥ 1, ii)ρ < 1. In subcase

i) it is easy to see that ((ρ + λ)(ρ − 1))(e−ρ(T−t) − e−(ρ+λ)(T−t)) + λ(1 − e−(ρ+λ)(T−t)) ≥ 0.

Thus ∂At

∂β
≤ 0 for all t and Wt. In sub-case ii), observe that 0 < e−ρ(T−t) − e−(ρ+λ)(T−t) <

1− e−(ρ+λ)(T−t). Therefore the sign of the numerator is positive if λ > (λ+ ρ)|ρ− 1|, which
is equivalent to λ ≥ −λρ + λ − ρ2 + ρ. This condition simplifies to ρ + λ ≥ 1 which is our

initial assumption. This implies ∂At

∂β
≤ 0 for all t and Wt.

Case 2 ρ+ λ < 1. Re-arranging the numerator yields

e−ρ(T−t) − e−(ρ+λ)(T−t)

1− e−(ρ+λ)(T−t) +
λ

(ρ+ λ)(1− ρ)
. (58)

When ρ+ λ < 1, both of terms are always less than 1. In the first term and for any T , one

of the following must be true: if e−ρ(T )−e−(ρ+λ)(T )

1−e−(ρ+λ)(T ) < λ
(ρ+λ)(1−ρ) , then

∂At

∂β
is always negative for

all t and all Wt; if
e−ρ(T )−e−(ρ+λ)(T )

1−e−(ρ+λ)(T ) > λ
(ρ+λ)(1−ρ) , then there exists some t < T such that for all

t′ ≤ t and all Wt′ ,
∂At′
∂β

≥ 0 and for all t′′ > t and Wt′′
∂At′′
∂β

< 0.

To prove the existence of T (λ, ρ), observe that e−ρ(T )−e−(ρ+λ)(T )

1−e−(ρ+λ)(T ) → 0 as T → ∞, and

→ λ/(1 + λ+ ρ) (following L’hopital’s Rule) as → 0 with a derivative that does not change
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sign. Thus, for each ρ and λ, there exists a unique T (λ, ρ) large enough such that (58) is

equal to 0.

Similarly, given the equilibrium wage ct =
1
2
a2t −

ln(γη)
η

− 1
η
ln(−Wt). With a slight abuse

of notation, let at(β) denote the optimal at as a function of β, we have

∂ct
∂β

= 2at(β)
∂at
∂β

.

Observe that at(β) ≥ 0 for all β. Thus, dc/dβ has the same sign as at
β
which has the opposite

sign of At. Therefore, ct and At must have opposite signs.

A.6.2 Proof of Proposition 5

Part 1) β = 1 implies Ȧt =
1
η
(ρ+ λ− 1), and β = 0 implies Ȧt =

1
η
(ρ− 1), both equivalent

to time-consistent solutions.

Part 2) Fix any t < T , limT→∞ at = 1

1+η2γ2σ2 1
η (

2ρ(ρ+λ)−(βλ+ρ)
ρ(ρ+λ) )

. which corresponds to the

solution in Holmstrom and Milgrom (1987) with a discount rate of ρ(λ+ρ)
βλ+ρ

.

Parts 3) Recall that the closed-form solution for at is:

at =
1

1 + η2γ2σ2 1
η

(
β(1−ρ)

ρ
e−ρ(T−t) + (1− β) 1−(ρ+λ)

ρ+λ
e−(ρ+λ)(T−t) + 2ρ(ρ+λ)−(βλ+ρ)

ρ(ρ+λ)

) .
The dynamics of at are pinned down by the term β (1−ρ)

ρ
e−ρ(T−t)+(1− β) 1−(ρ+λ)

ρ+λ
e−(ρ+λ)(T−t).

It’s time derivative equals to

β(1− ρ)e−ρ(T−t) + (1− β)(1− (ρ+ λ))e−(ρ+λ)(T−t). (59)

Clearly, if the sign of (59) changes as time changes, it must happen at a unique point. In

particular, for t small enough the first term dominates and (59) is always positive. For t

large enough, the second term dominates, and if (1 − (ρ − λ))(1 − β) is negative, (59) can

be negative.

A.7 Equilibrium Regularity

In this section we show that, under minimal additional assumptions, our equilibrium concept

can be strengthened to a regular equilibrium as in He and Jiang (2019): any local deviation
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to another contract, however small, is not profitable.35 As shown in Lemma 4, we have

lim
∆→0

inf
fC (t,W, t)− fC∆ (t,W, t)

∆
= (at − ct)− (a∆t − c∆t )−AC∆f tC(t,W ) +ACf tC(t,W ).

To apply Theorem 5.2 part iii) of He and Jiang (2019), it is sufficient to show that the

minimizer for the inf is unique.36 First, focus on the AC∆f tC(t,W ) + ACf tC(t,W ) terms.

Recall that the agents equilibrium continuation payoff W is the unique adapted solution the

BSVIE identified by:

W (t) = rt(T )u(cT , aT )−
∫ T

t

(as
σ
ψ̃(s, t) + rt(s)u(cs, as)

)
ds+

∫ T

t

ψ̃(t, s)dZ0
s .

Following Definition 4, let C∆ denote a small deviation during some time [τ, τ + ∆]. The

associated BSVIE satisfies

W∆(t) =
(
rt(T )u(cT , aT )

)
∆
−
∫ T

t

(as
σ
ψ̃(s, t) + rt(s)u(cs, as)

)
∆
ds+

∫ T

t

ψ̃(t, s)∆dZ
0
s

where

(
rt(T )u(cT , aT )

)
∆
=
(
rt(T )u(c∆T , aT )

)
I[τ,τ+∆] +

(
rt(T )u(cT , aT )

)
I[τ+∆,T ],(as

σ
ψ̃(s, t) + rt(s)u(cs, as)

)
∆
=

(
a∆s
σ
ψ̃(s, t) + rt(s)u(c∆s , a

∆
s )

)
I[τ,τ+∆]

+
(as
σ
ψ̃(s, t) + rt(s)u(cs, as)

)
I[τ+∆,T ]

and I denotes the indicator function. By Proposition 2.2 of Wang and Yong (2019a),

W∆(t) = W (t) τ +∆ < t ≤ T,

ψ̃∆(s, t) = ψ̃(s, t) τ +∆ < t ≤ s ≤ T

W∆(t) = W∆(t) τ ≤ t ≤ τ +∆,

ψ̃∆(s, t) = ψ̃∆(s) τ ≤ t ≤ τ +∆, t ≤ s ≤ T

35See Section 3.1 for the formal definition of a regular equilibrium in our setup.
36Theorem 5.2 of He and Jiang (2019) refers to a maximizer as they subtract the equilibrium payoff from

the deviation payoff. Instead, we subtract the latter from the former which yields a minimum.
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where W∆(t) is the adapted solution to the following BSDE

W∆(t) = rt(T )u(cT , aT )

−
∫ T

t

((
a∆s
σ
ψ̃∆(s) + rt(s)u(c∆s , a

∆
s )

)
I[τ,τ+∆] +

(as
σ
ψ̃∆(s) + rt(s)u(cs, as)

)
I[τ+∆,T ]

)
ds

+

∫ T

t

ψ̃∆(s)dZ
0
s .

Note that even though the deviation equilibrium value process is a BSVIE, it can be repre-

sented by a backward stochastic differential equation during the ∆-interval. In particular,

since rt(t) = 1, we have

dW∆(t) = −
(
a∆t
σ
ψ̃∆(t) + u(c∆t , a

∆
t )

)
dt+ ψ̃∆(t)dZ

0
t . (60)

for t ∈ [τ, τ + ∆]. Now, returning to (at − ct) − (a∆t − c∆t ) − AC∆f tC(t,W ) + ACf tC(t,W ),

we use the identity in Equation (60) where the deviation is from the original equilibrium

contract. Here, instead of canceling (at− ct)+ACf tC(t,W ), we can cancel the t derivatives in

AC∆f tC(t,W ) and ACf tC(t,W ). Also observe that the diffusion terms cancel each other as well,

since they are pinned down by ψ, which is the same in both contracts. Then, suppressing

the ∆ subscript for the equilibrium contract, we are left with the following:

lim
∆→0

inf
fC (t,W, t)− fC∆ (t,W, t)

∆
= (at − ct)− (a∆t − c∆t )

+

(
a∆t
σ
ψ̃∆(t)−

at
σ
ψ̃(t) + u(c∆t , a

∆
t )− u(ct, at)

)
f tC,W (t,W ).

Taking the first order derivatives with respect to a∆t and c∆t and setting them equal to 0

yields the following condition

ψ̃∆(t)

σ
+ ua(c

∆
t , a

∆
t ) = −uc(c∆t , a∆t ).

The above minimization can have multiple solutions without the incentive compatibility

condition. However, recall that the IC condition implies that ua(a
∆
t , c

∆
t ) = ψ̃∆(t) for any

deviation contract. Thus, under the assumption that uac(·, ·) > 0, there is a unique solution

that is both incentive compatible and is a deviation contract. Therefore by Theorem 5.2

part iii) of He and Jiang (2019), our equilibrium is also a regular equilibrium.
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A.8 Anticipatory Utility

In this section, we explore the applicability of our main theorem in another example in

the time-difference discount family: anticipatory utility. That is, in addition to the imme-

diate utility, the principal’s well-being also depends on her expectations of future utility.

Such expectations may arise from either “savoring” or “dreading” future consumption as in

Loewenstein (1987), or from optimism, as in Brunnermeier, Papakonstantinou, and Parker

(2016).37 To maintain tractability we retain the same assumptions made in Section 4 for the

problem on the agent’s side.

We model anticipatory utility following Loewenstein (1987). In addition to the current

payoff, the principal derives an additional e−ζt amount of utility from payoffs she anticipates

to receive at a future time t. Her discount of the future utility (both actual future payoffs

and anticipation of more distant future payoffs) is ρ. Formally, we assume

Assumption A.5 The principal values consumption streams by:

E

[∫ T

0

e−ρt (Πt + at − ct) dt

]
,

where Πt is given by

Πt = E

[∫ T

t

e−ζ(s−t)(as − cs)ds

]
.

Here, Πt captures the utility from the anticipated future payoff.By the Law of Iterated

Expectations and a change in the order of integration, the principal’s valuation of a stream

of payoffs starting from any period t can be re-written as

EC
[∫ T

t

(
e−ρ(s−t) − e−ζ(s−t)

ζ − ρ
+ e−ρ(s−t)

)
(as − cs)ds

]
.

As a result, the principal with the anticipatory utility can be understood as effectively having

the following discounting function Rt(s) = R(s−t) = e−ρ(s−t)−e−ζ(s−t)

ζ−ρ +e−ρ(s−t). The first term

captures the discounted anticipation: letting ζ → ∞ yields the standard discounting as the

utility from anticipation disappears. We also make a technical assumption that ζ > ρ > 1.

The first inequality is necessary for transversality and the second is necessary to avoid corner

solutions.38

37Other studies related to anticipatory utility include Caplin and Leahy (2001), Loewenstein, O’Donoghue,
and Rabin (2003), Caplin and Leahy (2004), Takeuchi (2011), etc.

38Although not noted in Loewenstein (1987), an appropriate numerical relationship between ρ and ζ is
economically crucial. Without further restrictions, utility of infinitely far future may still have a positive
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Similar to the case of quasi-hyperbolic discounting, because R(T − s) is an exponential

function in s, the integral in (32) has a closed-form solution. Based on the closed-form

solution, the implications of anticipatory utility can be summarized as follows:

Proposition 7 Under Assumption A.5 the optimal renegotiation-proof contract derived in

proposition 3 has the following properties:

1. If ζ = ∞, the optimal contract is identical to that for a dynamically-consistent principal

with discount rate ρ and optimal incentive power ψt and the equilibrium actions at are

(weakly) monotonic in time t.

2. As the contracting horizon becomes infinitely long (i.e., T → ∞), the optimal contract

converges to that for a time consistent-principal with discount rate ρζ
1+ζ

.

3. For any finite ρ and ζ, there exists T̃ (ρ, ζ) such that the optimal incentive power ψt

and the equilibrium actions at are non-monotonic in t as long as T̃ (ρ, ζ) < T <∞.

Proof: We first derive the equilibrium action path. Under assumption A.5, we can calculate

how a payoff in period τ is valued in the stream aτ − cτ as follows:∫ τ

t

e−ρ(s−t)e−ζ(τ−s)E(aτ − cτ |Ft)ds =
e−ρ(τ−t) − e−ζ(τ−t)

ζ − ρ
E(aτ − cτ |Ft).

Therefore, anticipatory utility is equivalent to the following discounting Rt(s) = R(s− t) =
e−ρ(τ−t)−e−ζ(τ−t)

ζ−ρ . Substituting in R and R′ from anticipatory utility to equation (54) yields

Ȧt =
1

η

(
(1− ρ)e−ρ(T−t) − (1− ζ)e−ζ(T−t)

ζ − ρ
+ (1− ρ)e−ρ(T−t)

)
.

Using the boundary condition AT = 1/η and integrating with respect to t implies:

At =
1

η

(
(1
ρ
− 1)e−ρ(T−t) − (1

ζ
− 1)e−ζ(T−t)

ζ − ρ
+

(1− ρ)

ρ
e−ρ(T−t) +

2ρζ − 1− ζ

ρζ

)
.

Thus, equilibrium action at is thus given by:

at =
1

1 + ηγ2σ2

(
( 1
ρ
−1)e−ρ(T−t)−( 1

ζ
−1)e−ζ(T−t)

ζ−ρ + (1−ρ)
ρ
e−ρ(T−t) + 2ρζ−1−ζ

ρζ

) .
We now prove each statement in Proposition 7:

value today after discounting.
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Part 1) Fix any t < T , then limζ→∞ at = 1

1+ηγ2σ2 2ρ−1+(1−ρ)e−ρ(T−t)

ρ

, corresponding to the

solution in Holmstrom and Milgrom (1987) with a discount rate ρ.

Part 2) As T → ∞, solving for r yields: 2r−1
r

= 2ρζ−1−ζ
ρζ

⇒ r = ρζ
1+ζ

.

Part 3) The dynamics of at are pinned down by the term
( 1
ρ
−1)e−ρ(T−t)−( 1

ζ
−1)e−ζ(T−t)

ζ−ρ +
(1−ρ)
ρ
e−ρ(T−t); the time derivative equals: (1−ρ)e−ρ(T−t)−(1−ζ)e−ζ(T−t)

ζ−ρ + (1− ρ)e−ρ(T−t). Observe

that if the time derivative ever becomes 0 we must obtain 1 =
(
ζ−1
ρ−1

)(
1

1+ζ−ρ

)
e−(ζ−ρ)(T−t).

Next, since we assume that ζ > ρ > 1, we have ζ−1
ρ−1

1
1+ζ−ρ > 1 and 1 ≥ e−(ζ−ρ)(T−t) ≥

e−(ζ−ρ)T > 0. Observe that if T is small enough, the derivative is always negative. However,

for any ζ, ρ if T is sufficiently large, there exists a t⋆ < T such that the derivative becomes

negative for all t > t⋆.

We illustrate the above properties in Figure 3.
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Figure 3: These plots illustrate the paths of the incentive power (also the paths of agent’s actions given
Proposition 3) under the optimal contract. Blue lines indicate the paths under anticipatory utility with
η = 2, σ = 1, ρ = 1.5, ζ = 3, γ = 1.5. Each plot corresponds to a different time horizon (different T ).

The first property is straightforward: if ζ = ∞, the principal receives no utility from

anticipation. Her discounting is then exponential and the optimal contract follows that

of Holmstrom and Milgrom (1987) with monotonic incentive power. The second property
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demonstrates that the effect of anticipation disappears if the time horizon becomes arbitrarily

large. The intuition is identical to why the effect of quasi-hyperbolic discounting disappears:

as the horizon increases, the problems faced by each of the principal’s t-self become similar.

When the horizon is infinitely long, the principal’s problem becomes completely stationary.

Thus, the solution converges to that of a dynamically consistent principal with a different

but constant discount rate. The third property highlights the possibility of non-monotonic

incentive power under a finite horizon, hence a “deadline effect”. With a finite horizon, the

anticipation of future payoff leads the principal to back-load incentive power. However, the

exact dynamics depend on the length of the contracting horizon: if the horizon is sufficiently

long, back-loading causes incentives to gradually increase in time in the early phases. As

the end of the contracting horizon approaches, the effect of anticipation diminishes, causing

incentives to decline over time.
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