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Abstract. These supplementary materials expand on the main text in several directions.

First, in Section 1, we provide an analysis of contiguous search by a risk-averse agent.

Second, in Section 2, we discuss contiguous search absent flow costs. Last, in Section 3, we

study commission contracts for agents searching over independent observations.

1 Beyond Risk Neutrality

In this section, we provide techniques for deriving the optimal policy for contiguous search

when agents are risk averse. For simplicity, we assume here that there is no discounting,

r = 0. The analysis of the optimal search scope follows that described in the main text.

We focus here on the derivation of the optimal stopping boundary. As a special case, we

illustrate the optimal stopping boundary for agents with constant relative risk aversion

(CRRA) utilities.

We start by providing an alternative representation to that offered by Lemma A2 (ab-

sent discounting) in the appendix to the paper. We then deliver an alternative characteri-

zation of the stopping boundary.

Claim 1: Let w(·) be the solution of the following Abel equation of the second kind:

w(M)w′(M)−w(M) =
(σ0)2

2c(σ0)
u′(M). (1)

The optimal stopping boundary is given by:

g(M) =M −H ′(M)
(σ0)2

2c(σ0)
,
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where 4c
σ2w(M) = 2

√
4c
σ2 (H(M)−u(M)).

Proof of Claim 1: We first identify an equivalent ordinary differential equation (ODE) for

the stopping boundary. The relationship of this ODE, which was originally derived for

calculating the value of a stopping problem for a standard Brownian motion with fixed

flow costs, and the one in Peskir (1998) was noted by Obłój (2007). We adapt the ODE to

our setting, allowing for search scope and its associated cost.

Lemma SM1 Let H(M) be defined as the minimal solution that satisfies H(M) ≥ u(M) to the
differential equation

H(M)− (σ0)2

4c(σ0)
(H ′(M))2 = u(M). (2)

Then,

g(M) =M −H ′(M)
(σ0)2

2c(σ0)
.

Proof of Lemma SM1: When r = 0, after some algebraic manipulations, equation (9) in

Lemma A2 reduces to

g ′(M) =
u′(M)(σ0)2

2c(σ0)(M − g(M))
.

Thus, the optimal stopping boundary is the maximal solution g(M) ≤M of the above

ODE. We now verify that the specification in the lemma’s claim indeed satisfies this ODE.

From the first equality, equation (2), analysis identical to that of Obłój (2007) illustrates

that the minimal solution satisfying H(M) ≥ u(M) corresponds to H ′(M) being chosen as

the positive square root as follows:

H ′(M) =

√
4c(σ0)
(σ0)2 (H(M)−u(M))

=⇒H ′′(M) =

4c(σ0)
(σ0)2 (H ′(M)−u′(M))

2
√

4c(σ0)
(σ0)2 (H(M)−u(M))

⇐⇒H ′′(M) =

2c(σ0)
(σ0)2 (H ′(M)−u′(M))

H ′(M)

⇐⇒H ′′(M) =
2c(σ0)
(σ0)2

(
1− u

′(M)
H ′(M)

)
.
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Consider the equation for g(M) in the lemma’s claim. It implies that:

H ′(M) =
(M − g(M))2c(σ0)

(σ0)2 and

g ′(M) = 1− H
′′(M)(σ0)2

2c(σ0)
.

Plugging in H ′(M) in H ′′(M) derived above and then plugging H ′′(M) in the expression

for g ′(M), we have

g ′(M) = 1− H
′′(M)(σ0)2

2c(σ0)

⇐⇒ g ′(M) =
u′(M)
H ′(M)

⇐⇒ g ′(M) =
u′(M)(σ0)2

2c(σ0)(M − g(M))
.

Our choice of H(M) as the minimal solution further guarantees that g(M) as specified in

the lemma is the maximal solution of this last ODE satisfying g(M) ≤M.1 Thus, we reach

our original ODE formulation, which completes the lemma’s proof.

Going back to the proof of Claim 1, let H(M) be defined by Lemma A1. As noted

by Zaitsev and Polyanin (2002), introducing the transformation 4c(σ0)
(σ0)2 w = 2

√
4c(σ0)
(σ0)2 (H −u),

equation (2) transforms into an Abel equation of the second kind in w,

ww′ −w =
(σ0)2

2c(σ0)
u′(M).

This, together with Lemma SM1, completes the proof of Claim 1. ■

We now utilize the formulation offered by Claim 1 to offer methods for solving the

optimal stopping boundary for non-linear utilities. As a special case, we apply these tech-

niques to identify a closed-form solution for the optimal stopping boundary correspond-

ing to CRRA utilities.

Consider the function H(M) identified in Lemma SM1. We can introduce the substi-

tution y(M) = 1
w(M) in the formulation (1) of Claim 1, which yields an Abel equation of the

first kind:

y′(M) = − (σ0)2

2c(σ0)
(u′(M))M3 + (y(M))2 .

1Indeed, notice that our selection of H ′(M) implies that H ′(M) =

√
4c(σ ∗)
(σ ∗)2 (H(M)−u(M)). Thus, g(M) =

M − (σ ∗)√
c(σ ∗)

√
(H(M)−u(M)), which is decreasing in H(M)−u(M) ≥ 0.
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Consider now the transformation y(M) = − 1
tM ′(t) with t as a free variable. This yields

an ODE of the Emden-Fowler type:

M ′′(t) = −t−2 (σ0)2

2c(σ0)
u′(M(t)). (3)

This ODE is solved by Panayotounakos and Zarmpoutis (2011) and has the following

parametrized solution, with z = z(t) as the free variable. For simplicity, we drop the ex-

plicit dependence of M(t) and z(t) on t to get:

(σ0)2

2c(σ0)u
′(M)

M
=

(3 +C1z)z4[
(2 +C1z)±

√
(2 +C1z)2 −C2z2

]3 ,
where C1 and C2 are constants of integration that parametrize the solution, and z satisfies

t = t(z) =
z

(2 +C1z)±
√

(2 +C1z)2 −C2z2
. (4)

From the above two equations, we can conclude the following:

(σ0)2

2c(σ0)u
′(M)

M
= (3z+C1z

2)(t(z))3,

with z as a free parameter. Similarly, inverting equation (4), we get:

z(t) =
4t

C2t2 − 2C1t + 1
.

In general, for any utility function, we can attempt getting a parametric solution using

equations (3) and (4). However, the term
(σ0)2

2c(σ0)
u′(M)

M suggests that some forms are easier to

tackle compared to others. In particular, plugging in the CRRA form, u(M) = M1−ρ

1−ρ ,

(M(t(z)))−ρ−1 =
2c(σ0)
(σ0)2 (3z+C1z

2)(t(z))3

=⇒M(t(z)) =
[

2c(σ0)
(σ0)2 (3z+C1z

2)(t(z))3
] 1
−ρ−1

,

which, inverting t and z, can be written as:

M(t) =
[

2c(σ0)
(σ0)2 (3z(t) +C1(z(t))2)t3

] 1
−ρ−1

.
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Let 2c(σ0)
(σ0)2 (3z(t) +C1(z(t))2) = P (t), so that

M(t) =
[
P (t)t3

] 1
−ρ−1 .

Recall that

w(M(t)) = −tM ′(t) =M(t)
1

1 + ρ
tP ′(t) + 3P (t)

P (t)

=M(t)
1

1 + ρ

(
tP ′(t)
P (t)

+ 3
)
.

Plugging in the functional form of z(t), we have:

P (t) =
2c(σ0)
(σ0)2

 16C1t
2

(C2t2 − 2C1t + 1)2 +
12t

C2t2 − 2C1t + 1

 ,
P ′(t) =

2c(σ0)
(σ0)2

−32C1t
2(2C2t − 2C1)

(C2t2 − 2C1t + 1)3 +
32C1t

(C2t2 − 2C1t + 1)2 −
12t(2C2t − 2C1)

(C2t2 − 2C1t + 1)2 +
12

C2t2 − 2C1t + 1

 .
Since [w(M)]2 = (σ0)2

c (H(M)−u(M)), we get:

H(M(t)) =
M(t)1−ρ

1− ρ
+

c

(σ0)2

[
M(t)

1
1 + ρ

(
tP ′(t)
P (t)

+ 3)
]2

,

H(M(t)) =
M(t)1−ρ

1− ρ
+

c

(σ0)2 [w(M(t))]2 .

Substituting P (t) into the expression for M(t) yields:

M(t) =

2c(σ0)4t4
(
3C2t

2 − 2C1t + 3
)

(σ0)2 (C2t2 − 2C1t + 1)2

− 1
ρ+1 .

Taking the derivative with respect to t generates

H ′(M)M ′(t) = u′(M)M ′(t) +
c

(σ0)2
[
2w(M(t))w′(M(t))M ′(t)]

]
.

By definition,

d [w(M(t))]
dt

= w′(M)M ′(t).

Recall that w(M(t)) = −tM ′(t). Thus,

w(M(t))w′(M) = −t d [w(M(t))]
dt

.
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Therefore, cancelling out M ′(t) on both sides, we get:

H ′(M) = u′(M)− c

(σ0)2

[
2t
d [w(M(t))]

dt

]
.

Recalling that −t2M ′′(t) = (σ0)2

2c(σ0)u
′(M(t)) and w(M(t)) = −tM ′(t),

H ′(M) = −2c(σ0)
(σ0)2 w(M).

Now, observe that for the stopping boundary to be valid, we need u to be increasing

over the domain of the process as otherwise we can potentially have u(X) > u(M). For

CRRA utilities, we know u is increasing over [0,∞) so a natural restriction is to impose

that the underlying process never reaches 0. This implies that the problem is well-defined

whenever M0 = X0 > M = X > 0 such that g(M) = 0, which we identify below. The restric-

tion that the boundary hits 0 at some M, namely g(M) = 0, is what allows us to identify

the maximal solution of g(M) ≤M (as noted in Obłój (2007) for diffusions with bounded

domain). This defines an additional boundary condition that needs to be satisfied by the

ODE. That is,

g(M) =M −H ′(M)
(σ0)2

2c(σ0)
= 0 =⇒ M +w(M) = 0.

LetM be the minimal value of the observed maximum such that the agent stops search-

ing wheneverM ≥M. If the agent never stops when reaching the observed maximal value,

we let M = ∞. The relevant domain of parameters t then corresponds to the set T such

that for any M ∈
[
M,M

]
there exists t ∈ T such that M(t) =M.

For some t∈ T , the level M can be defined parametrically as

M =M(t) =
(

2c(σ0)4t (3C2t − 2C1t + 3)
(σ0)2 (C2t − 2C1t + 1)2

)
− 1
ρ+1 .

Plugging this parametric identity into the boundary condition leads to

M(t) = −w(M(t)).

=⇒M(t) = −M(t)
1

1 + ρ

(
tP ′(t)
P (t)

+ 3
)
.

=⇒−1 =
1

1 + ρ

(
tP ′(t)
P (t)

+ 3
)
.

Since H ′(M) = −w(M) and g(M) =M −H ′(M) (σ0)2

2c(σ0) , for the stopping boundary g(M) to

satisfy our requirement that g(M) ≤M, we must have that w(M(t)) ≤ 0 for all t ∈ T given

the choice of C1 and C2. This implies that, for all t ∈ T , we must have −w(M(t)) = tM ′(t) ≥
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0, and thus M ′(t) has the same sign as t within T . Given our expression for M(t) above, it

follows that, for any selection of C1 and C2, 0 < T . In fact, our restriction that t and M ′(t)

coincide in signs implies that there exists ε > 0 small enough such that (−ε,ε) ∩ T = ∅.

Similarly, for large enough t̃ > 0, we have that (−∞,−t̃)∩ T = ∅ and (t̃,∞)∩ T = ∅. From

continuity, it follows that T = [t, t̄], where M(t) = M and M(t̄) = M. From the definition of

M, it follows that g(M̄) =M so that H(M(t̄)) = u(M(t̄)).

Recalling that H(M) = u(M) + c(σ0)
(σ0)2w(M)2 implies w(M(t̄)) = 0 as a second boundary

condition, and thus

w(M(t̄)) = 0 = (
t̄P ′(t̄)
P (t̄)

+ 3).

Combining the ODE with its boundary conditions, we can pin down a parametric solu-

tion of C1, t, and t̄ as a function of C2 and therefore an exact solution for the stopping

boundary.2 Qualitatively, the solution implies that M, the level of the maximal observed

value at which search ceases, is decreasing in the degree of risk aversion ρ. Intuitively,

as the agent becomes more risk averse, the marginal returns from improving the current

maximal value decline. Marginal search costs, however, are unchanged. Those costs then

overwhelm search benefits at lower values of search outcomes.

2 Discounted Search Without Flow Costs

Suppose that search costs are derived from exponential discounting alone, with no flow

costs. Formally, consider an agent facing a fixed search scope σ and maximizing an ob-

jective of the form e−rtMt, where r > 0 is the agent’s discount rate. Since ln(·) is strictly

increasing, we can write the agent’s optimization problem as:

max
τ

E (lnMτ − rτ)

dXt = σdBt

Mt = max
0≤s≤t

(Xs ∨M0)

X0 =M0 = 0.

This is equivalent to the optimization problem analyzed in the previous section, taking

the utility to be u(M) = ln(M), with constant search costs of r. As it turns out, there is a

readily available parametrized solution to the ODE specified in equation (2) in Section

2Relevant Mathematica code is available from the authors upon request.
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1.6.3.13 of Zaitsev and Polyanin (2002). Let

F =
[∫

e±z
2
dz+C

]−1

.

Then, the solution in parametric form is given by:

M(z) =
σ
√
c
Fe±z

2

H(z) =
[
(2z ±Fe±z

2
)2 ± 4log(

σ
√
r
F)− 4z2

]
,

with τ as a parameter and C as a constant of integration to be chosen. From Lemma SM1,

one needs to find the minimalH(M) ≥ u(M) that satisfies these equalities in order to obtain

the closed-form solution for the optimal stopping boundary g(M).

3 Contracting with Independent Draws

In this section, we consider an analogue of section 5 of the main text with independent

draws.3 We consider a setting in which the agent is sampling from independent normal

distributions centered around 0 and with a standard deviation σ chosen by the agent. The

problem of the principal then takes a similar form to that described in the text. Setting

X0 =M0 = 0, the principal’s problem can be written as:

max
w,α

E((1−α)Mτw,α − τw,αw)

s.t.τw,α ∈ arg max
τ,{σt}τt=0

E(αMτ −
τ∑
0

[c(σt)−w]dt),

where Xt ≡N (0,σt) and Mt = max0≤s≤t(Xs ∨M0) as before.

In order to solve the principal’s problem, we first focus on the agent’s problem. In

contrast with the analysis in the main text, due to the stationary structure of the envi-

ronment, if the agent continues to search at some level Mt, he continues to search at any

lower level M ′t <Mt. The agent then uses a satisficing threshold and never uses recall. The

agent’s choice of speed is then constant over time. For any constant speed σ , by Chow and

Robbins (1961), the one-step look ahead policy is optimal and determines the satisficing

threshold. In particular, when the agent is exactly indifferent between continuing or stop-

ping his search—at the threshold level—the value of sampling one more time equals the

value of immediately stopping. Letting φσ and Φσ denote the normal probability density

3To our knowledge, the problem of delegating an infinite-horizon search problem has not been solved.
Zorc, Tsetlin, Hasija, and Chick (2022) study a finite-horizon delegated search problem without recall and
without a control. See other related work referenced there.
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and cumulative distribution functions with variance σ2, respectively, we have:

αR(σ,w,α) = −c(σ ) +w+
∫ ∞
R(σ,w,α)

αxφσ (x)dx+
∫ (R(σ,w,α))

−∞
α(R(σ,w,α))φσ (x)dx.

Rearranging terms,

c(σ )−w+ = α
(∫ ∞

t(σ,w,α)
xφσ (x)dx+ t(σ,w,α)(1−Φσ (t(σ,w,α))

)
.

Let ψ(t) = φ1(t)− t(1−Φ1(t)). The function ψ(t) is invertible, positive, and strictly decreas-

ing. By Urgun and Yariv (2021),

R(σ,w,α) = ψ−1(
c(σ )−w

α
)σ,

which corresponds to the agent’s value of search. The agent therefore chooses his speed σ
to maximize R(σ,w,α). It follows that the optimal speed depends on both the flow wage
w and the commission α. It is far less amenable to analysis than the agent’s optimal speed
resulting from contiguous search.
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