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The search for good outcomes—be it government policies, technological break-

throughs, or a lasting purchase—takes time and effort. At times, the decision process

is unconstrained: an individual seeking a well-priced product determines her search

scope and time as she wishes. Often, search is constrained, either through institutions

or through cognitive limitations. For instance, product-development teams often face a

design freeze, a date at which the set of product features is locked and the first phase of

research and development terminates, see Eger, Eckert, and Clarkson (2005). Further-

more, various grants and funding entities provide timelines that constrain the length

of research. Similarly, in academia, graduate students and young faculty face research

deadlines through various milestones such as early-stage paper requirements, disserta-

tion prospectus, job-market applications, or tenure. Such limitations can also be hard-

wired: going back to Simon (1956), the literature has often considered simple heuristics

that govern individuals’ search procedures.

We consider retrospective search in such settings: a decision maker (DM) chooses the

search scope and time, selecting the best observed outcome upon stopping. We analyze

the impacts of constraints when observed samples are independent and correlated.

The search literature has, by and large, focused on environments in which observed
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samples are independent. Constraints in such settings have been analyzed in the cel-

ebrated work of Stigler (1961), who considered a DM choosing the volume of samples

at the outset. We show that correlation between samples yields dramatically different

implications, in terms of search scope and extent, as well as outcomes.

We consider a DM sampling from a normal distribution. The variance, or search

scope, is chosen at the outset. We examine both independent samples as well as corre-

lated samples, governed by a Brownian motion.

With independent samples, and no constraints, satisficing is optimal. When the DM

selects the sample volume at the outset, the scope of search changes, and outcomes can

be arbitrarily worse than those generated by search absent constraints. In contrast, when

observations are correlated, optimal search entails a drawdown stopping boundary. In

fact, any non-trivial satisficing generates worse outcomes than no search at all. Fur-

thermore, the impact of constraints differs. A commitment to a search time generates a

fraction of 2/π of the payoffs absent constraints, regardless of search costs.

1 Independent Samples

We start with the benchmark of independent samples. We consider discrete draws.

Indeed, in continuous time, with independent draws, the DM would reach any value

supported by the underlying distribution within an infinitesimal period of time.

Formally, the DM selects a search scope σ ∈ [σ, σ] at the outset. A search scope σ

is associated with a cost per sample of c(σ), with c twice continuously differentiable,

increasing, and weakly convex. At each period t in which the DM is searching, she

observes an i.i.d sample Xσ
t ∼ N(0, σ), with density φσ and cumulative distribution

function Φσ. We let φ and Φ denote the density and cumulative distribution functions

of the standard normal, with standard deviation of 1, respectively. The DM has perfect

recall, so keeps track of the maximum value observed, Mt = max
0≤s≤t

Xσ
s . For simplicity, we

assume that Xσ
0 = Mσ

0 = 0.
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The DM’s problem is then:

sup
τ,σ

E(Mτ − τc(σ)). (1)

Importantly, we assume no drift. We do so since, in most search applications, the

mere passage of time does not affect discoveries’ quality.

1.1 Unconstrained Search with Independent Samples

The stationarity of our environment suggests that whenever the DM continues searching

with Mt, she continues searching with any M′t ≥ Mt. It follows that recall plays no role—

the DM stops only when drawing a sufficiently high project value. The DM optimally

follows a satisficing threshold à la Simon (1956). In particular, using Robbins and Chow

(1961), one can show the following:

Proposition 1 (optimal i.i.d. stopping) For a given search scope σ, it is optimal to stop once

the satisficing threshold S(σ) is reached, where S(σ) solves

c(σ) =
∫ ∞

S(σ)
(x− S(σ))φσ(x)dx.

Furthermore, the expected payoff Viid(σ) from using the optimal satisficing threshold S(σ)

is Viid(σ) = S(σ).

Intuitively, optimality of the threshold requires that it coincide with the continuation

value of search. The continuation value is constant over time and, hence, Viid(σ) = S(σ).

The characterization of the optimal threshold is then a translation of this restriction. The

left hand side corresponds to the cost of an additional sample, while the right hand side

corresponds to the marginal value from another draw beyond the stopping threshold.

Let ψ(v) = φ(v)− v× (1−Φ(v)). The function ψ can be numerically tabulated, and

some analytical properties are well known: it is positive, strictly decreasing, convex, and
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symmetric, with a well-defined inverse. From DeGroot (1968), the value of sampling

optimally at a given search scope σ is given by

Viid(σ) = ψ−1

(
c(σ)

σ

)
σ.

The optimal search scope can be readily calculated as the maximizer:

Corollary 1 (optimal i.i.d. search scope) The optimal search scope σ maximizes ψ−1
(

c(σ)
σ

)
σ.

As it turns out, even if the DM could select a search scope freely at any period, the

constant search identified in Corollary 1 would be optimal. Intuitively, as recall plays no

role, the DM faces an identical optimization problem in each period while she searches.

When costs are sufficiently convex, say log-convex, the optimal search scope is ex-

tremal, either σ or σ.

1.2 Pre-Committed Time with Independent Samples

Consider now the case in which the DM simultaneously commits to the search scope

and the number of samples she draws. For a fixed search scope, this case resembles that

studied by Stigler (1961).1

Suppose the DM selects a search scope of σ and n samples of values. The resulting

payoff would then be the highest order statistic from a sample of n normal variables

censored at 0, net of the overall costs:

σ
∫ ∞

−∞
max(x, 0)nφ(x)Φn−1(x)dx− c(σ)n

The integral term is just the expected maximum of n draws from a censored normal

distribution with σ = 1.2 We denote the random variable corresponding to the highest

1Stigler (1961) did not consider an outside option for the DM, essentially assuming she selects a non-
trivial sample and potentially accepts arbitrarily bad outcomes. Our restriction that X0 = M0 = 0 therefore
changes somewhat the caculus underlying the characterization of the optimal policy, if not its description.

2The distribution of a normal variable censored at 0 is still scale-invariant, see the Online Appendix.
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order statistic of n normal samples censored at 0 with σ = 1 by Y(n). Its expectation

can be tabulated numerically, but analytical formulations are challenging for n > 3.

Nontheless, it can be shown that it is increasing and concave in n.

Proposition 2 (optimal i.i.d. constrained search) For any search scope σ, the optimal num-

ber of samples n solves:

E(Y(n+1))−E(Y(n)) <
c(σ)

σ
< E(Y(n))−E(Y(n−1)).

For any sample number n, the optimal search scope, if interior, solves E(Y(n)) = c′(σ)n.

The first restriction corresponds to the analysis of Stigler (1961). The DM selects

the maximal number of samples n such that the marginal benefit of the n’th sample is

exceeds its cost, while the marginal benefit of the (n + 1)’th sample does not.

The second restriction corresponds to a first-order condition with respect to the

search scope. Importantly, the optimal search scope in the optimal dynamic search,

characterized in Corollary 1 differs from that selected by a DM constrained to a pre-

committed number of samples.

2 Correlated Samples

In many applications, innovation begets innovation. In research and development, one

new technique or idea builds on previous ones. In geological surveys, one plot’s mineral

returns are indicative of the returns from an adjacent plot. In online shopping, suggested

items by commerce platforms are often associated with prior considered items. As we

show, the correlation of samples yields very different conclusions than those gleaned

from the i.i.d. case.

We model correlation over time using a Brownian motion governing the path of

values, similar to Callander (2011). For any search scope σ, the DM observes at time t
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the value Xσ
t satisfying

dXσ
t = σdBt,

where Bt is the standard Brownian motion with standard deviation of 1. As before, the

DM selects the search scope σ ∈ [σ, σ] at the outset, with the cost c(σ) defined as before.

The DM has perfect recall so records the maximum value observed at any time t, namely

Mt = max
0≤s≤t

Xσ
s . We continue assuming that Xσ

0 = Mσ
0 = 0. The DM then faces the same

problem as specified in (1), namely supτ,σ E(Mτ − τc(σ)).

We continue assuming no drift both to match most search applications and to main-

tain comparability with the independent-sample case. We note, however, that in this

setting, the maximum value itself exhibits a form of drift. Namely, with search scope σ,

at any time t, we have E(Mt) = σ
√

2t/π.

2.1 Unconstrained Search with Correlated Samples

The analysis of the optimal search policy when observations are correlated follows that

of Urgun and Yariv (2020). Perfect recall is now important. With any observed value,

the DM assesses the time it would take to reach a value exceeding the maximum value

observed, which she can collect immediately. With correlated samples, a current low

observed value relative to the historical maximum suggests a long time, entailing high

search costs, for search to pay off. In particular, the optimal stopping policy is now

identified by a stopping boundary, which may depend on the recorded maximum.

The following proposition characterizes the optimal stopping boundary, which turns

out to be a drawdown stopping boundary. That is, the DM stops searching whenever the

observed value is a fixed distance below the recorded maximum. That fixed distance is

referred to as the drawdown size.

Proposition 3 (Urgun and Yariv, 2020) For any search scope σ, the DM stops searching as

soon as Xσ
t ≤ Mσ

t − dσ at any time t, where the dradown size dσ is identified by dσ =

σ2

2c(σ) . The expected payoff is given by Vcorr(σ) = dσ

2 = σ2

4c(σ) .
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The optimal search scope then maximizes σ2/c(σ), so that we have:

Corollary 3 (optimal correlated search scope) The optimal search scope, if interior, solves
2c(σ)
c′(σ) = σ.

In fact, Urgun and Yariv (2020) show that such a constant search scope is optimal

even when scope can be adjusted dynamically. When costs are log-convex, an interior

solution is unique and exhibits natural comparative statics: as costs become more log-

convex, the optimal search scope declines. Importantly, the optimal search scope in the

correlated case differs from the optimal search scope in the independent case.

2.2 Pre-Committed Time with Correlated Samples

Suppose search is to take place over a period of time T, analogous to the pre-committed

number of samples considered in the independent-sample case. If the DM uses a search

scope σ, the expected payoff is:

V̄corr(σ; T) = E(MT)− c(σ)T.

Following standard arguments, the record-high level Mt at time t has the same dis-

tribution as that of |Xt|.The time-T realization of BT is normally distributed with mean

0 and variance T. Therefore, E(|Bt|) =
√

2T/π. Since Xt = σBt, we have that:

V̄corr(σ; T) = σ
√

2T/π − c(σ)T.

In particular, we can solve for the optimal search horizon and scope:

Proposition 4 (optimal correlated constrained search) For any search scope σ, the optimal

fixed search time is Tσ = σ2

2π(c(σ))
2 . The resulting expected payoff is V̄corr(σ; Tσ) = σ2

2πc(σ) .

The optimal search scope, if interior, solves 2c(σ)
c′(σ) = σ.
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Unlike the independent-sample case, the optimal search scope is the same, whether

or not the DM is constrained in her search.

2.3 Satisficing with Correlated Samples

When samples are independent, we showed that an unconstrained DM uses a satisficing

threshold to govern her stopping policy. How would satisficing perform when samples

are correlated? We now show that, when observations are correlated, the DM would

prefer to stop immediately rather than search following any positive satisficing threshold.

Indeed, suppose the DM stops whenever she reaches a satisficing level S ≥ 0. That

is, the DM stops only when hitting a new maximum of S, which is then her payoff.

Let τsat
S = inf{t ≥ 0 : Xt = S}. That is, τsat

S is the random time at which a satisficing

retrospective searcher stops. Since the underlying process generating outcomes Xt has

no drift, we have that for any S > X0, P(τsat
b < ∞) = 1, but E(τsat

b ) = ∞. Namely, the

expected time it takes a driftless Brownian motion to hit a certain threshold above its

starting point is infinite. The DM’s expected payoff is then negative for any bounded

S > 0. In particular, the optimal satisficing level is S = X0 = 0, indicating that a

satisficing DM stops immediately.3

Why is satisficing so inefficient for a retrospective searcher? While the DM may get

a high level of utility upon stopping, determined by her satisficing level, she may also

continue her search when low values are observed, ones that would ideally induce her

to cease search. That possibility is prohitively costly in expectation. A natural extension

to the satisficing heuristic would then allow for a threshold below which the DM stops.4

3Similar extreme predictions occur with drift. Indeed, suppose values exhibit a drift of µ and that the
search scope σ comes at a flow cost of c. The expected payoff from a satisficing threshod S would be
S− Sc/µ. Thus, for low costs such that c < µ, the optimal satisficing level would be infinite, while for
high costs such that c > µ, optimal satisficing would dictate immediate stopping.

4With scope σ, expected payoffs from satisficing threshold S ≥ 0 and departure threshold D ≤ 0 are:

ΠD,S(σ) =
|D|S
|D|+ S

 |D|
|D|+ S

+ ln

(
|D|
|D|+ S

)− |D|S
σ2 c(σ).

One can show that, optimally, |D| = S.
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3 Impacts of Constraints

Search with independent samples generates different behavior than search with corre-

lated samples. While satisficing is optimal with independent samples, it does poorly

with correlated samples, when a drawdown stopping boundary is optimal. The optimal

search scope also responds differently to features of the cost. With independent sam-

ples, unconstrained search leads to the use of the last value observed, while constrained

search leads to the last value being used with some probability, which vanishes as the

number of samples grows. In contrast, with correlated samples, the last value observed

is never used.5

The impacts of constraints also differ across the two settings. With independent

samples, the optimal search scope changes when search time is chosen at the outset; with

correlated samples, the optimal search scope is the same with and without constraints.

Certainly, in both settings, constraints reduce the value of search. When samples are

correlated, committing to a search time entails the loss of a fixed fraction of the search

value. In contrast, as we now show, with independent samples, ex-ante commitment to

a search time may have severe consequences, depending on search costs.

For simplicity, consider a linear cost function: c(σ) = aσ with a > 0. In this case, it

is easy to verify that, in both settings, with or without constraints, the optimal search

scope is σ. Denote the corresponding expected payoff from the optimal policy in the

independent setting for the unconstrained and constrained search by Viid(a) and V̄iid(a),

and for the correlated setting by Vcorr(a) and V̄corr(a), respectively. An application of

our results thus far is then the following:

Corollary 4 (constraints and costs) For the independent-sample setting, lim
a→0

Viid(a)/V̄iid(a) =

∞. For any a > 0, in the correlated-sample setting, Vcorr(a)/V̄corr(a) = 2
π .

5For the constrained case, this is an artifact of our continuous-time setting: even when search is con-
strained to horizon T > 0, the event that the maximal value occurs at T has zero probability.
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Taken together, our results illustrate the dramatically different behaviors indepen-

dence and correlation across samples generate. In particular, the impacts of constraints

can differ drastically across the two environments.
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