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Abstract

I explore how a principal dynamically chooses among multiple agents to

utilize for production. The principal chooses at most one agent to utilize in

every period affecting the states of the agents. A utilized agent changes its state

because it is utilized, but the nonutilized agents do not remain at rest: they

also change their state. The analysis requires a novel methodological approach:

the agency problem that the principal faces with each agent is shown to be an

appropriately designed restless bandit, creating a multiarmed restless bandit.

The optimal contract is characterized by an index rule for the restless bandit.
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JEL-Classification: D21, D86, L14, L24

1 Introduction

Firms often maintain relationships with multiple trading partners to outsource pro-

duction. To manage complex production needs, firms rely on both “just-in-time” spot

contracts and informal promises of future business across multiple partners. The fear
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of losing future business or the threat of a trading partner going rogue can motivate

both the outsourcing and the outsourced parties to keep their promises.

When selecting a trading partner to outsource, it is commonsensical that a firm

considers the benefits of immediate trade, the outside option of the partner and

the potential loss if the partner is spurned. In addition, the act of outsourcing or

not might have an impact on the future state the trading partner since the partner

could potentially be more/less efficient or have better/worse outside options as a

result. When there are multiple potential partners there is an additional tradeoff

as outsourcing to one partner is done at the expense of others. Hence, even if the

relationships appear to be bilateral, they necessarily become intertwined.

This paper explores how a firm (principal) can dynamically choose which trad-

ing partner (agent) to utilize for production when utilization affects all the trading

partners. A principal repeatedly interacts with multiple agents, and the variation

in the states of the agents across time is partially controlled by the utilization de-

cisions of the principal. The principal chooses at most one agent to utilize in every

period. A utilized agent potentially changes their state as a result of this utilization.

For example, the agent might get tired, reducing their efficiency. If the agent is not

utilized still changes their state, but roughly on the “opposite direction”, e.g. agent

can recover their energy, increasing their efficiency. In general, a change in state can

simultaneously effect the benefits from immediate utilization, the outside option of

the agent and loss to the principal should the agent leave the relationship in a given

state potentially in different ways. In the same example, getting tired may reduce

the efficiency of an agent, but could potentially increase their outside option since the

agent has a recent production experience. Furthermore, these changes are tied by the

utilization as trying to increase the outside option for an agent necessitates decreasing

the outside options of all the other agents. Despite the potential complexities in such

relationships, the principal optimal utilization schedule is achieved by a simple index

rule and an accompanying payment rule. The index of an agent depends only on

the current state of the agent and captures the shadow value of utilizing the agent

whenever his state is equal to the current level. The payments play a dual role of

satisfying incentive constraints and being embedded into the index.

The simplicity of this policy reveals striking characteristics about the optimal

contract. When making a utilization decision, the principal could potentially rely

on many factors, including the entire history of the relationships, all the informal
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promises she made, or even calendar time. At the very least one could expect an

elaborate scheme that depends on the states of all the agents. However, the index

does not depend on these factors: it simply depends on the current state of an agent

and the mechanics, i.e., the underlying law of motion governing the states of the agent

in question.

A more commonly explored approach with endogenous control of state transitions

occurs when the states change only when an agent is utilized. In such a framework,

nonutilized agents do not change their state, simplifying the problem, as only one

agent changes his state while the remaining agents remain at “rest”. However, such

a framework cannot capture an agent getting tired and recovering their productivity,

or a case of not working for the principal diminishing the outside option of the agent

because there is a gap in the agent’s employment history. When the agents change

state in different forms based on utilization and nonutilization, they are never at

rest; that is, they are restless. When the effect of utilization and non-utilization

have roughly opposite effects, restlessness is bidirectional. Note that bidirectional

restlessness is aimed at capturing different economic phenomena than exogenous state

transitions. In particular, bidirectional restlessness focuses for deliberate choices as

opposed to random shocks. For example, allowing an agent to recuperate by making

him not exert effort is a deliberate choice, whereas a random shock would imply the

agent recovers or gets tired regardless of he is exerting any effort or not.

The effect of utilization decisions changing the state without full commitment

already poses some challenges, as controlled state transitions in a repeated interaction

inherently change the so-called “promise keeping” constraints in equilibria. In general

settings, additional state and co-state variables that keep track of the continuation

values are necessary to obtain a recursive formulation; thus, an index solution, despite

being intuitive at first, is not immediate considering the constraints. In a single-

agent relational contracting problem, one can circumvent this problem by focusing

on the continuation surplus and imposing a dynamic enforcement constraint on this

continuation surplus. However, this approach hinges critically on the valuation in

the objective and the constraint being perfectly aligned.1 In the multi agent setup,

the state becomes multi-dimensional, consisting of the states of all agents. There

are multiple forward looking constraints that needs to be satisfied at every period

1Rustichini (1998) establishes constraint efficiency with Markovian behavior when the valuation
of future payoffs in forward looking constraint is identical to the valuation in objective.
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associated with the respective agent’s state that are tied by utilization. Relaxing

the problem via a “Lagrangian decoupling” by requiring utilization constraints to

hold only on average enables disentangling these constraints. The decoupling allows

focusing on i-dyads, a relationship with a single agent and the associated constraint,

which can again be translated into a dynamic enforcement constraint. However,

these i-dyads no longer have identical objectives and constraints as the objective now

includes the lagrange multiplier. This form of decoupling has its roots in the Bandit

literature, but it turns out it also preserves an some alignment of the constraints and

the objectives. Even though Markovian behavior in each relaxed relationship can be

established, the characterization of such behavior and whether it is still feasible in

the restricted original problem requires introduction of the restless bandits.

To characterize the optimal behavior, I show that a principal optimal contract of

this game can be identified by index policies and the principal’s problem is a version

of a restless bandit problem where I build upon the Whittle (1988) index. Despite the

various incentive frictions and complex relationships, the indices in this paper share

some of the characteristics of the Gittins (1979) index, which was celebrated for its

surprising simplicity. Indeed, the index here captures the time-normalized marginal

returns to changing a policy, whereas the Gittins index captured the time-normalized

average returns.

Technically, the framework relies on bidirectionality of state transitions that are

dependent on utilization, that is, utilizing an agent and not utilizing an agent have

opposite effects. Unlike standard bandits even a one armed restless bandit in gen-

eral might not be indexable, which poses a technical challenge. The main benefit of

bidirectionality is subtle: it allows establishing indexability just based on the state

transitions and not the returns. This enables consideration of payment schemes (hence

returns) custom tailored to the incentive friction at hand. Those payments are then

used to construct bandits without worrying about the existence of an index. De-

spite the reliance on bidirectionality, due to the freedom provided on the states, the

methodology is broadly applicable to other scenarios, such as persistent capital in-

vestments, liquidity constraints that are tied to performance, and reputation build-up

in different markets, and can be altered more in the case of a single agent. In the case

of multiple agents, the restless bandit approach introduces an additional difficulty,

unlike the Gittins index, the Whittle index for restless bandits is generically optimal

only in a relaxed version of the problem. In that vein, one advantage of a contract-
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ing setup is the fact that payments form an integral part of the index calculations

and optimality of the index policy can be achieved by changing the bandits via the

payments and /or randomization.

This paper is organized as follows. Section 1 continues with a short literature

review. Section 2 describes the general framework and provides a preliminary char-

acterization of contracting frictions. Section 3 delivers the optimal contract and the

indices in a single agent setup and then extends the single-agent analysis to the gen-

eral setup. Finally, section 4 concludes. All proofs that are not provided in the main

text are in the appendix.

1.1 Related Literature

This paper builds on a large number of relational contracting papers, a vast literature

that I do not survey here. Malcomson et al. (2010) provides an excellent survey.

The brief analysis in the single-agent setup addresses mainly endogenous state

transitions in a relational contracting setup. The canonical reference is Levin (2003),

although Thomas and Worrall (1988), Ligon, Thomas, and Worrall (2002) and Kwon

(2016) also consider persistent states in a relational contracting environment. The

main difference between these papers and the current one is the endogenous ver-

sus exogenous state transitions. As highlighted before, such an extension inherently

captures different economic phenomena and requires different approaches.

A related strand of literature is on relational contracts with persistent private

information. Such problems also inherently have persistence of states as there is

information revelation through contracting. However a distinct feature is that the

learning dynamics generate a particular and one-directional transitions. Thus the

control, if present is limited to the speed of learning implied by the contract. Moreover

the main focus is about separation or pooling of the persistent private information.

Furthermore due to the learning dynamics there is always a fixed set of states (or

single true knowledge) that the processes converge to regardless of the actions and

that set of states is irreducible. Notable contributions in this strand include Halac

(2012), Yang (2013) and Malcomson (2016). In contrast the restless structure here is

intended to capture direction as well as speed of state transitions, there is no private

information and the states are directly payoff relevant.

The full model explores dynamic work allocation across multiple agents. The
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classic reference for the multiagent contracting model is Levin (2002). However, the

model is a complete contracting setup; thus, utilization is not fully dynamic. The

effect of commitment is severe in multiple-agent setups and has been highlighted

in Cisternas and Figueroa (2015). The references to fully dynamic work allocation

are Board (2011) and Andrews and Barron (2013), which feature multiple agents in

a relational contracting setting. The main difference is that control via utilization

is absent in those settings, and the optimal contract is history-dependent in both.

In contrast, the general model with multiple agents delivers the principal-optimal

contract in a dynamic work allocation setup, highlighting the effect of control and

recovers history independence while simultaneously introducing bandits as a potential

and tractable tool to analyze such settings.

The critical problem for the principal in both settings is to find an optimal utiliza-

tion schedule despite the lack of an inherent recursive structure in the game. Bandit

problems are also scheduling problems; thus, I build upon techniques in the bandit

literature. From a methodological perspective, approaching the principal’s problem

as a bandit problem is different from the approach of canonical papers in relational

incentive contracting, such as Levin (2003), Baker, Gibbons, and Murphy (2002),

and Malcomson et al. (2010). Most of the literature utilizes the inherent recursion in

repeated games, which provides a recursive characterization of the payoff space. The

main advantage of a bandit approach is that it allows for an easily implementable

policy when the payoff space is harder to characterize.

Forward-looking constraints with endogenous state transitions pose a technical

challenge and usually require additional co-states and recursive Lagrangians. Marcet

and Marimon (2019) and Pavoni, Sleet, and Messner (2018) provide the most general

framework at the cost of keeping track of these co-states. For single agent setups,

Rustichini (1998) can be used to establish that Markov behavior without additional

co-states is constraint efficient.

Since this paper utilizes bandits, a technically close strand of literature is the ex-

perimentation literature, although there is no experimentation in the setup. This is a

vast literature that I do not survey here, but some notable contributions are Bolton

and Harris (1999), Bergemann and Välimäki (1996), Keller, Rady, and Cripps (2005),

Rosenberg, Solan, and Vieille (2007), Strulovici (2010) , Klein and Rady (2011), and

Fryer and Harms (2017). A large portion of this literature uses standard bandits (a

notable exception that also utilizes restless bandits is Fryer and Harms (2017)) to
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answer questions of when to make a switch from experimentation to exploitation in

various settings with beliefs about a project being the deciding factor of experimen-

tation. This paper interprets the arms of a bandit as the agents themselves and thus

introduces bandits as a potential framework for dynamic contracting. The “arms”

have their own incentive constraints that must be satisfied, and the state reflects the

commonly known state of an agent.

Within the bandit literature, this paper builds upon restless bandit problems.

Gittins, Glazebrook, and Weber (2011) provides an excellent treatment of this litera-

ture, and Nino-Mora et al. (2001), and Glazebrook, Hodge, and Kirkbride (2013) are

notable contributions. Restless bandits are bandit problems where even the arms that

are not operated continue to provide rewards and to change states, albeit at different

rates. The pioneering work in this literature is Whittle (1988), where a heuristic

index is derived based on a Lagrangian relaxation of the problem. Papadimitriou and

Tsitsiklis (1999) showed that general restless bandits are intractable, and even the

indexability of the problem is difficult to ascertain. Build upon the work of Glaze-

brook, Hodge, and Kirkbride (2013), I show that bidirectionality can be utilized to

both circumvent tractability issues and achieve optimality.

Finally, as a generalization of bandit problems, this paper utilizes general existence

results on Markov decision problems. Markov decision problems have an established

literature that encompasses multiarmed bandits as a subfield. Notably, Puterman

(2014) and Bertsekas and Shreve (2004) provides comprehensive treatments of the

subject.

2 Model

2.1 Basic Setup

Suppose there are N + 1 players, player 0, the principal (she), who interacts with

N agents (he) in time periods t ∈ {0, 1, 2 . . .}. In each period, the principal needs

a single good that can either be supplied by one of the agents or produced by the

principal herself. Producing the good by herself is normalized to a payoff of 0 for the

principal. Each agent i has a state that effects their relationship with the principal

in period t, denoted by sti ∈ Si, for a finite set Si ⊂ R. Let
∏N

i=1 Si = S denote the

full state space consisting of the sates of all agents. Let st = (st1, s
t
2 . . . s

t
N) denote the
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vector of states of all agents in period t. All agents discount future payoffs with a

common discount factor δ ∈ (0, 1). In each period t, the following events unfold:

1. Agents’ states are realized (st1, s
t
2, . . . s

t
N) and become publicly known.

2. The principal publicly offers a spot contract to each agent (pti, I
t
i ), that in turn

specifies a set of payments pt = {pti}i∈{1,2,...,N} ∈ RN and a single source of

production, either utilizing one of the agents or producing herself. I assume no

limited liability, as agents might be willing to pay to acquire know-how. I ti = 1

indicates that agent i is chosen for utilization. Formally, let {I ti}i∈{0,1,2,...,N} ∈
{0, 1}N+1 denote the vector describing the principal’s utilization choice with

the restriction that
∑N

i=0 I
t
i = 1 and I0 = 1 denoting the principal producing

herself.

(a) Each agent simultaneously decides to accept (d = 1) the principal’s offer

or reject the offer (d = 0) and take their outside option, ending their

relationship with the principal dtk ∈ {0, 1}, k ∈ {1, 2, . . . , N}.

(b) The principal pays all the agents as contractually obligated.

(c) If agent j is chosen for utilization and agent j accepted, he produces a

good that has value v to the principal; the principal covers the production

cost cj(s
t
j).

(d) If the agent chosen for utilization has taken his outside option, then the

principal produces by herself at a normalized payoff of 0.

(e) Each agent i that has taken their outside option leaves forever, earning a

payoff ρi(s
t
i).

(f) Each agent i that has taken their outside option inflicts a loss of γi(s
t
i) on

the principal.

3. Any agent who has produced (chosen and accepted) changes his state as if he is

utilized, all other agents that are still in the game change their state as if they

are not utilized.

4. The principal sends a public and costless signal yt ∈ S × RN .
= Y that is not

payoff relevant.

5. Move on to t+ 1.
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Throughout, I assume ci, ρi, γi are real-valued functions. The public signal yt serves

no purpose other than simplifying the description of off path behavior for equilibria

and can be completely dispensed with.

The principal’s set of achievable payoffs depends on which agents remain, in addi-

tion to their states; hence, it useful to keep track of when and if an agent has decided

to break off. Let Ti be defined as Ti = inf{t ≥ 0 : dti = 0} with the convention that

Ti = ∞ if agent i never breaks off, and let 1ti be the indicator function for Ti not

having occurred by t. That is, 1ti = 1 ⇔ Ti 6≤ t. Given the setup, the payoffs in

period t are given by:

ut0 =
N∑
k=1

1tk

[
N∑
k=1

I tk
[
dtk
[
v − ck(stk)

]]
−

N∑
k=1

dtkp
t
k −

N∑
k=1

(1− dtk)γk(stk)

]
,

utk = 1tk
(
dtkp

t
k + (1− dtk)ρk(stk)

)
.

The timeline identified here captures the scenario where a principal is deciding

between outsourcing to a single agent or producing in-house. Based on the choices of

the functions ci and ρi, the framework can capture different incentive frictions that

might arise in different setups. Since (pti, 0), and in particular (0, 0) is an admissible

contract offer that can be accepted, dti = 0 is interpreted as breaking off the rela-

tionship altogether instead of non-utilization. Making the ci functions constant while

having variable ρi’s captures cases where the agent states can capture how good/bad

the agents are at diverting funds or how good they are at holding up the principal.

Making the ρi functions constant while letting ci’s have a monotone structure could

enable focusing on the scheduling aspect from the principal’s perspective, where she

faces agents having different levels of tiredness and loss of efficiency due to being

tired. Letting both functions vary with some monotonicity in state can capture cases

of learning via doing/organizational forgetting and being able to utilize the experience

against the principal. Nonetheless, for the general solution, I put no such monotone

structures on the functions themselves.

2.2 States and Transitions

One important part of the interaction above is the transitions of agents’ states and

how they are tied to whether the agent produces or not. In most relationships, it
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easy to imagine that producing and not producing have different effects on an agent.

Agents might become tired, thereby increasing their costs, or they might be getting

better at their jobs and hence decreasing their costs. Alternatively, agents might be

getting more familiar with interaction with the principal, making it easier for them

to subvert funds or, in an opposing case, the principal might be getting better at

understanding their behavior and limiting their ability to subvert funds. Regardless

of the particular change, it is commonsensical to tie such changes to utilization by the

principal rather than leaving it exogenous. The law of motion across states and their

interaction with the functions ρi, ci and γi are convenient tools to model different

kinds of economic phenomena within this general framework. I first describe the sets

of states and their laws of motion and then introduce some necessary assumptions.

Assumption 1 (Sets of States). For each i, Si = {si,1, si,2, . . . si,Ni} for some Ni <

∞, with si,1 ≤ si,2 . . . ≤ si,Ni.

Assumption 1 is fairly self-explanatory, each agent has a finite state space that is

ordered.

Assumption 2 (Restlessness). For each agent i, there are two transition matrices

that identify the laws of motion across states: Pa
i and Pp

i with Pa
i 6= Pp

i . If an agent

i is chosen to be utilized for production (I ti = 1) and undertakes (dti = 1) production,

agent i changes states according to the transition matrix Pa
i . If an agent i is not

utilized for production (I ti = 0), agent i changes states according to the transition

matrix Pp
i .

Assumption 2 implies that by choosing who to utilize, the principal effectively

controls the state transitions of all the agents since Pa
i 6= Pp

i and the principal can at

most utilize one agent. If the matrices were identical, the scenario would correspond

to the case of exogenous state transitions which would correspond to random shocks.

If any agent is not utilized, then instead of remaining in his current state (a.k.a.

resting), he continues to change their states according to {Pp
j}{j:Itj=0}; hence, these

agents are called restless.

From here onward, an agent is called active if he is chosen to be utilized and

accepts the contract. Similarly an agent that is not chosen for utilization is called

passive in that period.

Assumption 3 (Bidirectionality and Skip Free). For each i and each k, l ∈ {1, 2, . . . Ni},
the matrices Pa

i and Pp
i satisfy the following:
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1. pai,(kl) =


qi ∈ (0, 1] if l = k + 1, l < Ni,

1− qi ∈ [0, 1) if l = k,< l < Ni,

1 otherwise.

2. ppi,(kl) =


1 if l = k − 1, l > 1,

1 if l, k = 1,

0 otherwise.

Assumption 3 puts a bidirectional structure on restlessness. Bidirectionality means

that an agent being active or passive causes transitions in opposite directions of the

state space. The assumption impacts the state transitions, but the functions ρi, γi

and ci need not be monotone with respect to the states, still allowing for a rich set

of incentive frictions.

The first part of the assumption states that an active agent either remains in the

current state or goes up in step sizes of at most one, that is, without skipping any

states, with a strictly positive probability that depends on the agent. Notably, The

skip free assumption is akin to continuity of the state transitions. In what follows I

will denote qi the speed of agent i.2 The second part of the assumption states that a

passive agent goes down with certainty, again with a step size of one. The certainty is

imposed in order to accommodate multiple agents without imposing any conditions

on the functions ci, γi or ρi.

The three assumptions together enforce a structure on how each agent transitions

through states by the utilization decisions, yet no restrictions are applied jointly or on

the payoff relevant functions. The structure allows each agent to have a completely

unique state space and different state transitions while respecting bidirectionality,

and the functions ci, ρi and γi could be completely different for each agent. Since

the functions don’t have any restrictions the framework can capture a broad range of

economic phenomena where activity and passivity have opposite effects. For example,

the states could capture the tiredness level of an agent, where an active agent becomes

increasingly more tired and a passive agent becomes less tired in a gradual fashion.

2Since the state space is finite but arbitrary it is possible to introduce consecutive states that
have the same payoffs, thereby introducing different speeds with respect to the payoff relevant
variables. For example two consecutive states si,n, si,n+1 can have ρi(si,n) = ρi(si,n+1), γi(si,n) =
γi(si,n+1), ci(si,n) = ci(si,n+1), so it would take two steps at speed qi to increase or decrease the
payoff relevant parts. This approach can also be used to approximate more general step sizes instead
of just 1, as long as bi-directionality is preserved.
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Similarly, the transition could capture dynamics such as learning by doing and orga-

nizational forgetting, where only an active agent can become more experienced, and

a passive agent will suffer from organizational forgetting.

Assumption 4 (No-Strings at Initial States and Loss From Breaking Off). For each

i γi(si,1) = ρi(si,1) = 0 and γi(·) ≥ ρi(·) ≥ 0

Assumption 4 implies that, in their initial states, the agents have a normalized

outside option of 0 and cannot inflict any costs on the principal by leaving. That is,

there are no proverbial strings attached in the initial states, ruling out equilibria (and

their potential use as threats) with all or some of the agents quitting immediately.

This assumption is restricts focus on scenarios where having been utilized for produc-

tion provides a positive outside option for the agent, as well as holding some intrinsic

value for the principal. The loss to the principal being larger than the gain to the

agent means that an agent breaking off represents a loss in surplus, which is sufficient

to rule out entry but not necessary. The cases where the latter part of the assumption

is violated is also of interest but introduces significant technical challenges and thus

is left for future work.3

2.3 Strategies and Equilibria

Letting {sti}i∈{1,2,...,N} denote the states of each agent at the end of period t (that

is, after the state transition), the history for period t, ht, which is observed by all

players, is given by

ht = {{I ti}i∈{0,1,...N}, {pti}i∈{1,2,...,N}, {dti}i∈{1,2,...,N}, {sti}i∈{1,2,...,N}, yt}.

Let ht = {hn}t−1
n=0 be a history path at the beginning of period t, and let h0 =

{{si,1}i∈{1,2,...,N}} be the initial history with all agents starting in their respective

smallest states. Let H t = {ht} be the set of histories until time t, and let H = ∪tH t

denote the set of histories. At the beginning of each period t, conditional on ht, the

3Without such an assumption optimal behavior could involve finite relationships, where an agent
is used until a state is reached then breaks off. This makes it harder to disentangle the relationships
unless it is a trivial sequence: utilize an agent until retiring only then start utilizing another agent.
In single agent setups the solution would be trivial and can be solved via backward induction. In
multiple agent setups even if the relationships can be disentangled over finite horizons it would still
be a multiple stopping problem with control, which would require quasi-variational techniques as in
Bensoussan and Lions (1987).
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principal decides on {pti}i∈{1,2,...,N} ∈ RN and {I ti}i∈{0,1,2,...,N} ∈ {0, 1}N+1 with the

restriction that
∑N

i=0 I
t
i = 1. The principal’s choice is publicly observed. Conditional

on ht and the principal’s action in period t, each agent decides on dti. The principal’s

strategy is a sequence of mappings from histories to her set of feasible actions, denoted

by {σt0}t∈N : H t → RN × {0, 1}N+1 × Y : the full sequence is denoted by σ0. Agents’

strategies are sequences of mappings from histories and the principal’s actions to

their sets of feasible actions, denoted by {σti}t∈N : H t × RN × {0, 1}N+1 → {0, 1}
for i ∈ {1, . . . , N}. Again, the full sequence is denoted by σi. Mixed strategies

are defined in the usual manner. Denote Σ0 and Σi, i ∈ {1, . . . , N} as the sets of

strategies. Let v0(σ0, {σi}i∈{1,2,...,N}|ht) and vi(σ0, {σi}i∈{1,2,...,N}|ht), i ∈ {1, . . . , N}
denote, respectively, the principal’s and agents’ expected utilities following a history

ht conditional on a profile of strategies σ = (σ0, σ1, . . . , σN). A profile of strategies

and the one step transition matrices identified induce a probability measure P with

expectation operator E so at the beginning of any period t, the expected payoffs to

the principal (0) and agents i ∈ {1, 2, . . . , N} over the infinite horizon are given by:

vt0 = E

[
∞∑
τ=t

δτ−t

(
N∑
k=1

1τk

[
N∑
k=1

Iτk [dτk [v − ck(sτk)− pτk]]−
N∑
k=1

(1− dτk)γk(sτk)

])]
,

vti = E

[
∞∑
τ=t

δτ−t (1τk (dτkp
τ
k + (1− dτk)ρk(sτk)))

]
.

Since there is no hidden information, the equilibrium concept is subgame perfect

equilibrium (SPE). A SPE is a strategy profile σ such that the strategy profiles

following any history form a Nash equilibrium following that history. In particular, a

strategy profile is an SPE, where for each history ht,

σ0 ∈ arg max
σ̃0∈Σ0

v0(σ̃0, {σi}i∈{1,2,...,N}|ht),

σi ∈ arg max
σ̃i∈Σi

vi(σ̃i, σ0, {σj}j 6=i∈{1,2,...,N}|ht) for all i.

I denote the set of achievable SPE payoffs by E . It is important to emphasize

that E depends on the initial states of the agents; however, in this setup, I suppress

the dependence since I assume that all agents i start at their respective first state

si,1. Furthermore, observe that any strategy profile σ induces a sequence of controlled

Markov chains over Si for each i. However, due to Assumption 3, these controlled

Markov chains are not necessarily irreducible; hence, without restricting the strategy
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space, there is no simple way to characterize the payoff space.

2.4 Early Analysis and Constraints

A relational contract is a profile of strategies σ that constitute an SPE of the repeated

game. An optimal relational contract is a relational contract that maximizes the

principal’s payoff at the beginning of the game. Given Assumption 4, I restrict

attention to contracts where no agent breaks off on path, that is, dti = 1 for all

i and for all t on path, notice that an agent can still be non-utilized indefinitely

without breaking off. Since the signal sent by the principal is payoff irrelevant and

the principal can convey any information credibly by her offers, on the equilibrium

path I will assume that yt = (st, pt) that is she just repeats what is publicly known

and all players ignore the signal on the equilibrium path.

In order to proceed with a characterization of an optimal relational contract, it is

important to pin down the punishment payoffs for each player. Since the agents do

not directly interact with each other, I assume the agents cannot cooperate to punish

the principal; that is, the punishments are bilateral.

The agents do not interact directly other than observing the public history; hence,

I also assume that the agents cannot punish each other. In particular, the only

interaction an agent has is whether to remain with the principal or take their outside

option at any point in time; hence, the incentive constraint of an agent i takes the

following form:

Lemma 1. An optimal relational contract is incentive compatible for agent i if

E

[
∞∑
τ=t

δτ−tpτi

]
≥ ρi(s

t
i) for all t. (ICi)

Furthermore observe that in case the principal deviates against a single agent,

then she can just keep relationships with the other agents unchanged by replacing

the utilization of the agent with self utilization which has a normalized payoff of

0. Given the bilateral punishment and the ability to utilize herself, the principal’s

incentive constraint for not deviating reduces to the following:

Lemma 2. An optimal relational contract is incentive compatible for the principal if

E

[
∞∑
τ=t

δτ−tIτi [v − ci(sτi )]− pτi

]
≥ −γi(sti) for all t and for all i, (ICi

0)

14



Notice that since the principal always has the ability to produce herself at a

normalized utility of 0, any offer that is expected to be turned down can just be

replaced by the principal offering to produce herself. As noted earlier the principal

can offer a contract (0, 0) to an agent every period, which can be accepted by the

said agent, resulting in no utilization and this can be part of the equilibrium. Thus

without loss I will restrict attention to equilibria where dti = 1 on the equilibrium

path for all agents and all periods. With the restriction that no offer of the principal

is turned down on the equilibrium path, an optimal relational contract is a solution

to the following problem, which I call the principal’s problem:

[Principal′s Problem]

max
{Iti },{pti}

E

[
∞∑
τ=0

δτ

(
N∑
k=1

Iτk [v − ck(sτk)]−
N∑
k=1

pτk

)]

subject to
N∑
l=0

I tk = 1 for all t,

ICi
0 and ICi for all i.

3 Analysis

In this section, I first explore a setting in which there is a single agent. I characterize

the payment scheme and transform the single-agent contracting problem to a single-

arm restless bandit problem using the payment scheme. Then, in the appendix I

reformulate the results of Glazebrook, Hodge, and Kirkbride (2013) to the current

setting to show the optimality of the index policy. After the analysis of the single

agent, I proceed to the multiagent setup. In the multiagent setup, I first use a

relaxation and show that the relaxed problem decouples into single-agent problems

and then show that the index policy from the single-agent problem is feasible in the

nonrelaxed version to show the optimality of the index policy.

3.1 Single-Agent Analysis

Before delving into the full problem, first let me characterize the solution when there

is a single agent i. In this case, only two incentive constraints exist, and the principal’s
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problem reduces to the following:

[Principal′s Single Agent Problem]

max
{Iti },{pti}

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )]− pτi )

]

subject to E

[
∞∑
τ=t

δτIτi [v − ci(sτi )]− pτi

]
≥ −γi(sti) for all t,

E

[
∞∑
τ=t

δτ−tpτi

]
≥ ρi(s

t
i) for all t.

Definition 1 (Surplus of i-Dyad and Continuation Payoffs with a Contract). For

any incentive compatible relational contract {I ti}, {pti} the i-dyad surplus at period t

is defined as:

Sti = E

[
∞∑
τ=t

δτ (Iτi [v − ci(sτi )])

]
.

The principal’s total payoff from i in period t is defined as

U t0,i = E

[
∞∑
τ=t

δτIτi [v − ci(sτi )]− pτi

]
.

The agent’s total payoff in period t is defined as

U ti = E

[
∞∑
τ=t

δτ−tpτi

]
.

The i-dyad surplus is the sum of the utilities of the principal and the agent arising

from a relational contract starting from period t, the principal’s total payoff from i is

the portion of the profits of the principal from her relationship with agent i, and the

agent’s total payoff is just his continuation payoff under the relational contract.

Lemma 3. Suppose there exists a relational contract that generates a surplus Sti ≥
ρi(s

t
i)−γi(sti) for all t. Then, any pair of total payoffs U t0,i,U ti such that U t0,i ≥ −γi(sti)

and U ti ≥ ρi(s
t
i) with U t0,i + U ti = St can be implemented in a relational contract.

Proof. Consider the relational contract that generates surplus Sti at period t but

delivers payoffs Ũ t0,i, Ũ ti . Without loss of generality, assume Ũ t0,i > U t0,i Since the

contract is relational, it must be the case that Ũ t0,i ≥ −γi(sti) and Ũ ti ≥ ρi(s
t
i), but
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keeping the rest of the contract as is and increasing pti by Ũ t0,i−U ti does not affect any

future incentives compared to the original contract that generates Sti and remains

incentive compatible for both the principal and the agent at period t and, hence, is a

relational contract that delivers U t0,i,U ti .

Lemma 3 is similar to the results in Levin (2003) and Kwon (2016). Since the

spot payments are contractual, the principal can freely transfer utility from herself

to the agent or vice versa by adjusting the payment pt. The lemma is used in an

identical fashion to Levin (2003) and Kwon (2016) to restrict attention to surplus

maximization.

Observe that the two incentive constraints can be combined to obtain the dynamic

enforcement constraint:

E

[
∞∑
τ=t

δτ−t (Iτi [v − ci(sτi )])

]
≥ ρi(s

t
i)− γi(sti). (DEi)

Due to Lemma 3, the single-agent problem is equivalent to maximizing the i− dyad
surplus subject to the dynamic enforcement constraint DEi. Hence, the problem is

equivalent to:

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )])

]
(SPi)

subject to E

[
∞∑
τ=t

δτ−t (Iτi [v − ci(sτi )])

]
≥ ρi(s

t
i)− γi(sti) for all t. (DEi)

Note that DEi is a forward-looking constraint with endogenous state transitions, so

we cannot proceed along the lines of Kwon (2016).

Proposition 1. The surplus maximization problem SPi subject to the dynamic en-

forcement constraint DEi is solved optimally by a Markovian policy.

Proof. The proposition is a straightforward application of Rustichini (1998) for incentive-

constrained problems where the incentive constraint is reliant on the continuation

utility being greater than a state-dependent value. Observe that the set of available

actions including mixtures is [0, 1], which is independent of the state at every point in

history and is compact valued. The transition probability is continuous with respect

to the action. The aggregator for the utility is the discounted sum; hence, it is sep-

arable after the first period, first-period separable, stationary and strictly increasing

17



in future utility, and biconvergent. Finally, ρi − γi does not depend on the action

taken. Hence, theorem 3.6 in Rustichini (1998) applies to deliver the existence of an

optimal Markovian policy.

According to Proposition 1, there is an optimal solution I ti (s
t
i) that is dependent

on only the current state of the agent.

3.1.1 Markovian Behavior in Single-Agent Problems

Due to the binary nature of the utilization decision, any Markov policy is simply a

partitioning of the state space, where in one partition, the agent is active and in the

other, the agent is passive. Using Bidirectionality we can put further structure into

such partitions.

Proposition 2. Under Assumptions 1, 2 and 3, any Markovian policy is equivalent

to a threshold policy identified by a threshold state s̄i. Only the threshold and the state

immediately below are recurrent; all other states are transient.

Note that under Assumption 3, if the agent is passive in the initial state, he

remains passive forever, and the initial state is the threshold. If the agent is active

in the initial state, he will continue going up in states until he reaching the smallest

element of the passive set. Once the passive set is reached, the agent will become

passive and return to the last active set and cycle between these two states forever.

3.1.2 Active-Passive Payments

Note that for any Markov utilization policy, since there are no limited liability con-

straints and payments are allowed even when agents are not utilized, there are multi-

ple ways to maximize the principal’s profits. Below, I introduce a particularly useful

method that identifies a sequence of payments that are optimal for any threshold

policy with skip free, bidirectional transitions.

Definition 2 (Active-Passive Payments). For any agent i and any state si,k ∈ Si,

active-passive payments are defined as

pai (si,k) = (1− δ(1− qi))ρi(si,k)− δqiρi(si,k+1),

ppi (si,k) = ρi(si,k)− δρi(si,k−1),
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with the convention that ppi (si,1) = 0. If there is randomization in the initial state

for activation with rate ri ∈ [0, 1], the active payment in the initial state is given by

pai (si,1, ri) = −δqiriρi(si,2).

The active-passive payments identify two potential payments for each state: when

the agent is active at state si,k, the agent is paid the active payment pai (si,k) corre-

sponding to that state; when the agent is passive at state si,k, the agent is paid the

passive payment ppi (si,k) corresponding to that state. At state si,1, due to Assumption

4, there is no immediate threat that the agent can use; similarly, there is no cost to

having the agent quit. Hence, the initial passive payment must be exactly 0, and the

agent pays activation, the possibility to increase his state, which he can use in state 2

onwards to extract rents. The randomization is not necessary to utilize in the single

agent setup at all, however it is useful to break ties to accommodate the utilization

constraint in the multi agent setup. In particular, it is especially useful as there is no

risk of going to a lower state.

Proposition 3. For any agent i and any threshold level s̄i ∈ Si, active-passive pay-

ments are optimal.

The point of the proposition is slightly subtle. Because of the relatively simple

incentive friction, there are multiple ways to achieve optimality for a given thresh-

old. Active-passive payments, on the other hand, are optimal for any threshold.

In particular, for any threshold policy, the agent’s incentive constraint holds with

equality at every reachable history. This particular construction is specific to the

form of bidirectionality assumed in Assumption 3. The critical bit in generalizing the

construction to other forms of bidirectionality is identifying the set of transient and

recurrent states in a given threshold, then using the long term frequency of a state

(hence the incentive rents that need to be paid at that state) to identify the necessary

payment.

The key ingredient in moving from a generic Markov decision problem to a restless

bandit problem is appropriate choice of payments. The multiplicity of the potential

payment schemes might seem like a problem but such multiplicity allows “construc-

tion” of bandits as the payments are an integral part of the returns from an agent. The

freedom to “construct” bandits is useful in tackling the intractability issues related

with restless bandits.
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3.1.3 Transforming the Single-Agent Problem into a Restless Bandit Prob-

lem

Active-passive payments satisfy the agent’s incentive constraint at every point in

history for every threshold policy and, therefore, every Markovian policy. Hence,

the principal’s problem with a single agent can be reduced to an optimal utilization

problem (via an optimal threshold) assuming that the principal will have to pay the

appropriate passive and active payments to the agent. To reformulate the problem

in this manner, let me first introduce the returns from agent i with active-passive

payments.

Definition 3 (Returns with Active-Passive Payments). The return from agent i is

the net profit from agent i when the agent is paid according to active-passive payments.

For each state si,k, a passive Rp
i (si,k) and an active returns Ra

i (si,k) are:

Rp
i (si,k) = −ppi (si,k),

Ra
i (si,k) = v − ci(si,k)− pai (si,k).

Now, observe that due to the presence of γi, a sufficient condition for the principal’s

incentive constraint to be satisfied is that the principal’s continuation payoff is positive

at every point in history. Hence, we can introduce the restless bandit formulation of

the principal’s single-agent problem as follows:

[Principal′s Single Restless Bandit Problem]

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi )Rp

i (si,k))

]
Note that this problem has an optimal solution in Markovian policies, and since I ti = 0

for all t is a feasible solution that yields exactly 0 returns, it must be the case that the

principal’s incentive constraint is satisfied. Before introducing the index directly, let

me introduce two related definitions to highlight the economic intuition of the index,

originally introduced in Niño-Mora (2007), adapted to the threshold setting.

Definition 4 (Reward Measure with Thresholds). The reward measure with threshold

si,j starting from si,k, denoted fki (j), is the sum of the expected discounted rewards

with a threshold si,j when the initial state is si,k.

fki (j) = E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi )Rp

i (s
τ
i ))|s0

i = si,k; I
t
i = 1⇔ sti < si,j

]
.
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Definition 5 (Work Measure with Thresholds). The work measure with threshold

si,j starting from si,k, denoted gki (j), is the sum of expected discounted utilization with

threshold si,j when the initial state is si,k.

gki (j) = E

[
∞∑
τ=0

δτ (Iτi )|s0
i = si,k; I

t
i = 1⇔ sti < si,j

]
.

The first measure is the expected discounted rewards from a threshold policy. The

reward measure can be identified for any activation policy and captures the profits

that the principal receives subject to paying the agent with active-passive payments.

For standard bandits, the reward measure with respect to the optimal stopping policy

is the numerator of the celebrated Gittins index. The second measure is the expected

discounted time the agent is utilized with a threshold policy. Again, in principle, this

measure can be identified for any policy, not only threshold policies. For standard

bandits, the work measure with respect to the optimal policy is the denominator of

the Gittins index. With the two measures defined, the index of state si,k is defined

as follows.

Definition 6 (Index of State si,k). The index of state si,k, denoted by λi(si,k), is:

λi(si,k) =
fki (k + 1)− fki (k)

gki (k + 1)− gki (k)
.

The index identified here is the so-called Whittle index of state si,k that captures

the work normalized marginal gains to increasing the threshold from si,k to si,k+1.

It is important to highlight that if randomization is used in the initial state, has no

impact on the indices as it cancels out equally on both fki (k+1), fki (k) and respectively

gki (k + 1), gki (k).4

Theorem 1. Under Assumptions 1, 2, and 3, in the problem with only agent i, a

principal optimal contract is as follows:

1. Agent i is paid according to active-passive payments.

2. At each period t, agent i at state sti is utilized if and only if λi(s
t
i) ≥ 0.

4Nino-Mora calls the index the “Marginal Productivity Index” in a series of works Niño-Mora
(2006, 2007), as the index can be viewed as the “shadow price” of the policy, that is, the gains from
changing a policy only marginally, albeit the margin is on the “thresholds”. Indeed, the original
interpretation of Whittle (1988) is from Lagrangian relaxation of the multiagent problem, where the
indices captured are exactly the shadow prices of a policy in this relaxed problem.
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In the single agent case, in light of Proposition 2 the on path optimal behavior

reduces to simply identifying an optimal threshold, which can in principle be solved

without appealing to any indices. According to Proposition 3, the incentive conditions

of the agent are satisfied exactly, so the principal is giving away minimal rents with

any threshold including the optimal one. The indices capture the marginal benefit of

increasing the threshold, naturally the optimal threshold is the one where the marginal

benefit becomes negative. Choosing this optimal threshold, first proposed by Whittle

(1988), is obtained by considering a hypothetical situation where, in addition to the

passive returns Rp
i (·), the principal also receives a subsidy λ whenever the agent is

not utilized. As the level of λ changes, it is conceivable that the optimal threshold

changes. If the optimal threshold changes monotonically, then the restless bandit

is indexable and the index itself is also monotone. The level of λ that makes both

thresholds si,k and si,k+1 optimal is the index. Indeed, although unnecessary for a

single agent, this λ subsidy problem is the basis of the multiple-agent problem, as will

be shown in the next subsection.5 It is important to note that the critical ingredient

for indexability is the bidirectional nature of the bandits. In general both the reward

measure and the work measure should affect the indexability of a problem, but in case

of bidirectional bandits only the work measure being weakly monotone is sufficient.6

Notice that the work measure is only reliant on the law of motion and not the payment

scheme. Therefore, in case of bidirectional laws of motion it is possible to custom

tailor the payment schemes to the incentive frictions to construct the returns (hence

the bandits), without worrying about the indexability of the problem.

An important observation about the actual path of play is that in case of a single

agent if the indices are both negative and positive then in the long run the agent will be

cycling between two states due to the bidirectional law of motion. The principal will

employ the agent repeatedly until the first time the index is negative then will produce

herself once the index becomes negative. However, once the principal produces herself

the agent will return to the previous state with the positive index and will cycle

indefinitely from that point onward. If the index is negative for all states then the

agent is never utilized, if the index is positive for all states then the agent is utilized

at every period on the path of play. Finally, the index being positive implies that

5Recall that a simple one armed bandit is just a stopping problem and does not need to be solved
with indices, the indices are distinctly useful in the multi-arm case.

6This is first shown in Glazebrook, Hodge, and Kirkbride (2013), but a replication of their
argument is also provided in the appendix.
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the profits increase in every state by moving the threshold up compared to those

achieved by never utilizing the agent. Therefore, the principal’s profits are always

positive, which implies they are larger than the outside option of −γi(sti).

3.2 Multiple-Agent Analysis

When multiple agents are present choosing an agent over another introduces several

complications. Utilizing an agent now potentially changes the states of all other

agents. This in turn implies that the incentive constraints of agents also become

intertwined, so the utility promises to agents are not easy to analyze in isolation.

Nonetheless it turns out approaching the problem as a Restless bandit problem allows

a form of decoupling of this intertwined problem and allows us to identify the principal

optimal contract in terms of indices that only depend on the relevant agent.

3.2.1 Lagrangian Relaxation and Markovian Behavior

Observe that since the principal always produces herself if she does not utilize the

agents, the utilization constraint can be equivalently stated as
∑N

k=1(1− I tk) ≥ N −
1 for all t. Consider a relaxation of the utilization constraint, where instead of holding

at every period, the utilization constraint holds in the long-run on average.

[Principal′s Relaxed Problem]

max
{Iti },{pti}

E

[
∞∑
τ=0

δτ

(
N∑
k=1

Iτk [v − ck(sτk)]−
N∑
k=1

pτk

)]

subject to E

[
∞∑
τ=0

δτ
N∑
k=1

(1− Iτk )

]
≥ N − 1

1− δ
,

ICi
0 and ICi for all i.

Using a Lagrange multiplier λ ≥ 0 for the relaxed utilization constraint and reorga-

nizing the terms yields the following form of the relaxed problem

max
{Iti },{pti}

E

[
∞∑
τ=0

δτ

(
N∑
k=1

[Iτk (v − ck(sτk))] + λ(1− Iτk )−
N∑
k=1

pτk

)
− λN − 1

1− δ

]
subject to ICi

P and ICi
A for all i.
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Now, observe that for any λ ≥ 0, the relaxed problem can be thought of as a hypo-

thetical λ subsidy problem, where the principal receives a λ ≥ 0 subsidy every time

an agent is not utilized. The problem can be decoupled to an agent-by-agent problem

since the remaining incentive constraints hold per agent. In particular, the principal

faces the following decoupled λ subsidy problems that for each agent.

max
{Iτi },{pτi }

E

[
∞∑
τ=0

δτIτi [(v − ci(sτi )) + λ(1− Iτi )− pτi ]

]
(PPi − λ)

subject to E

[
∞∑
τ=t

δτIτi [v − ci(sτi )]− pτi

]
≥ −γi(sti) for all t,

E

[
∞∑
τ=t

δτ−tpτi

]
≥ ρi(s

t
i) for all t.

Following the single-agent problem, I introduce the following definition.

Definition 7 (λ-Surplus of i-Dyad). For any relational contract {I ti}, {pti}, the i-dyad

λ-surplus at period t is defined as:

Stλ,i = E

[
∞∑
τ=t

δτ
(
Iτi [v − ci(sτi )] + (1− I ti )λ

)]
Lemma 4. Suppose there exists a relational contract that generates a surplus Sti ≥
ρi(s

t
i) − γi(s

t
i) for all t and λ-surplus Stλ,i. Then, any pair of total payoffs U t0,i,U ti

such that U t0,i ≥ −γi(sti) and U ti ≥ ρi(s
t
i) with U t0,i + U ti = Sti can be implemented in a

relational contract while delivering a λ-surplus Stλ,i.

The proof of Lemma 4 is identical to that of Lemma 3 and hence is omitted. The

only difference between the two lemmas is that there are now two ways to evaluate

a contract: by the λ surplus or by the regular surplus. The regular surplus governs

the incentives within the relationship, whereas the λ surplus incorporates the positive

externality that nonutilization generates on the other relationships managed by the

principal. Analogous to the single-agent problem, the two incentive constraints can

be combined for the dynamic enforcement constraint DEi, and the problem can be
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reduced to surplus maximization subject to the dynamic enforcement.

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )] + (1− Iτi )λ)

]
(SPi − λ)

subject to E

[
∞∑
τ=t

δτ−t (Iτi [v − ci(sτi )])

]
≥ ρi(s

t
i)− γi(sti) for all t (DEi)

Problem SPi−λ is similar to SPi, but it also incorporates the benefit of relaxing the

utilization constraint whenever the agent is not utilized. Despite the similarity, it is

no longer possible to use Rustichini (1998) to conclude the optimality of Markovian

behavior, as the objective and the constraint are now different. However, as shown

in the appendix, Markovian behavior is still optimal in SPi − λ.

Proposition 4. The surplus maximization problem SPi − λ subject to the dynamic

enforcement constraint DEi is solved optimally by a Markovian policy.

The proof of proposition 4 is relatively involved but ultimately boils down to

the following. Since the continuation value in the objective and the constraint are

no longer identical it is necessary to use co-states to keep track of the incentives

as in Marcet and Marimon (2019). However, these continuation values are similar

enough(they only vary by λ), so that on the optimal solution the co-states are con-

stant. Once the optimality of Markovian behavior is confirmed, some of the analysis

from the single-agent problem carries over.

Proposition 5. Under Assumptions 1, 2 and 3, any Markovian policy is equivalent

to a threshold policy identified by a threshold state s̄i. Only the threshold and the state

immediately below are recurrent: all other states are transient.

Proposition 6. Under Assumptions 1, 2 and 3, for any agent i and any threshold

level s̄i ∈ Si, active-passive payments identified in definition 2 are optimal.

The proofs of propositions 5 and 6 are identical to respectively propositions 2 and

3, hence omitted. Here, it is important to highlight that once Markovian behavior is

established, the payment scheme is identified only to satisfy the incentive constraints

and is not related to the hypothetical subsidy level λ. Similarly, returns with active-

passive payments are defined identically to definition 3. However, the objective of

principal’s restless bandit problem does incorporate the subsidy. In particular letting
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Rp
i (si,k), R

a
i (si,k) denote the active-passive returns as in definition 3 we have:

[Principal′s Single Restless Bandit Problem with Subsidy]

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi ) [Rp

i (si,k) + λ])

]
In fact, single-arm restless bandits with λ subsidies can be combined. Clearly, sub-

tracting a constant λN−1
1−δ has no impact on the optimal policy so we achieve the

relaxed problem as follows:

max
{Iti }i∈{1,2,...,N}

E

[
∞∑
τ=0

δτ
N∑
i=1

(Iτi R
a
i (s

τ
i ) + (1− Iτi ) [Rp

i (si,k) + λ])

]
− λN − 1

1− δ

subject to ICi
P for all i

Ignoring the incentive constraint of the principal, the remainder of the problem is

exactly the Lagrangian relaxation that was proposed in Whittle (1988) as the basis

for the Whittle index for restless bandit problems. If the problem is indexable, that

is, every single arm problem is indexable, then the Lagrangian relaxation is solved

optimally by an index policy. Under Assumptions 1, 2, and 3, the restless bandits in

the λ subsidy problem are finite-state bidirectional restless bandits that are skip-free

in at least one (both in this case) direction; therefore, each arm is indexable similar

to the single agent setup. For each single agent, the reward f ji (k) and work gji (k)

measures are defined identically, and the index of each agent at each state is again

identically defined as:

λi(si,k) =
fki (k + 1)− fki (k)

gki (k + 1)− gki (k)

With the identical indices defined, I can characterize a principal optimal contract in

an identical manner to the single agent one.

Theorem 2. Under Assumptions 1, 2, and 3, a principal optimal contract is as

follows:

1. At each period t, agent i is utilized at state sti if and only if λi(s
t
i) ≥ 0 and

λi(s
t
i) > λj(s

t
j) for all j.

2. All agents are paid according to active-passive payments, potentially with initial

state randomization.
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The path of play induced by the theorem is relatively simple and leads to the

following corollary.

Corollary 1. There is at most two agents that are ever utilized. The first agent to

be utilized has no randomization, the second agent to be utilized (if he exists) is paid

with an initial state randomization rate that is equal to the speed q of the first agent.

The randomization starts when the index of the first agent falls below the initial index

of the second agent.

While deciding on the optimal contract the principal first calculates the indices

of all states of all agents. Any agent that has an index that is negative in the initial

state is never utilized. If there is only one agent that has an initial state with an index

that is positive, that agent is either utilized forever if the indices of all his states are

positive or utilized repeatedly until his index drops below 0. From that point onward,

the principal cycles every period between producing herself and utilizing the agent.

If multiple agents have an initial state that is positive, then the principal starts by

utilizing the agent with the highest initial index and continues to utilize him until

his index drops below the initial index of another agent. At that point, the principal

starts cycling between the two agents. In essence, there is at most one “main” agent

and potentially one “back-up” agent. Agents waiting in their initial state are never

paid, the main agent is paid every period, and the back-up agent is paid the first

time the main agent’s state falls below his and then he is utilized and paid with a

randomization in the initial period, at a rate that matches the speed of the main

agent.

Under the bidirectional setup it is easy to verify that the work measure of an agent

is decreasing as qi increases. However, the overall impact on the index or payments

requires additional (potentially monotone) structure on the functions ρi, γi and ci. In

case of multiple agents the total effect would also rely on the indices of all agents,

and without a particular application in mind it is hard to state general comparative

statics. However, there is one notable comparative static with respect to the agents

since each agent’s indices are calculated independently. In particular, it is easy to

see that adding agents whose initial index is below the main or back-up agent has no

impact at all. An addition of agent is only relevant if his initial index is higher than

the main or the back-up agent. If the initial index is higher than the main agent,

he becomes the main agent, and the previous main agent is relegated to back-up. If
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the initial index is only higher than the back-up agent (this could be the principal

herself) he replaces the back-up agent and the main agent remains unchanged.

4 Conclusion and Potential Applications

The restless specification of the dynamic contracting framework enables investigating

problems where utilization choices have direct impacts on the utilized part capturing

a wide variety of phenomena, from learning by doing, organizational forgetting and

entrenchments. Such phenomena occurs frequently in outsourcing, especially in con-

tract manufacturing where the entire product is outsourced as opposed to just parts.

Despite the cost advantages and broad usage contract manufacturing relationships

usually suffer from problems tied to utilization which could be captured by rest-

less formulation explored here. In many contract manufacturing agreements parties

soon find themselves immersed in a “melodrama replete with promiscuity, infidelity,

and betrayal” Arrunada and Vázquez (2006). In some cases a contract manufac-

turer(agent) is in a prime position to compete or even overtake the client. “Adding

insult to injury, if the client had not given its business to the traitorous contract man-

ufacturer, the CM’s knowledge might have remained sufficiently meager to prevent

it from entering its patron’s market”.(Arrunada and Vázquez (2006)). Indeed, Intel,

Cisco Systems and Alcatel juggled their production in order to curb the learning and

efficiency of the CM, a problem that could be readily captured by an increasing pair

of “break-off” functions (ρ(·), γ(·)) in the setup explored. Alternatively in different

industries CM’s must be able to meet a client’s needs for flexible scheduling and ca-

pacity Langer (2015). However, as McCoy (2003) notes, when a client approaches a

contractor she may discover that he is entrenched with little flex capacity. The rela-

tionships between a client and a potential contractor become necessarily intertwined

despite their bilateral nature as the client might just want to cycle through CMs to

avoid such entrenchments. Contractors manage these diverse relationships by trying

to keep their facilities running at 70 − 80% capacity and they meet extra demands

by working overtime Tully (1994). Thus, a contractor may have to over-utilize his

assets, which increases his costs. Again a problem that can be readily captured by

the restless setup via an increasing production cost function (c(·)).
Problems tied to utilization is present in many other settings beyond the contract

manufacturing example as well, and the restless setup explored here provides a sim-
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ple, tractable framework to study many economic phenomena where a principal might

have to juggle different agents. The index solution here provides an optimal and in-

tuitive method of “juggling”, with the familiar interpretation as a marginal increase,

where the margin is defined via the indices. The restless bandits literature has some

limitations due to the tractability of the bandit problem, but the dynamic contract-

ing setting not only captures a lot of economic phenomena naturally but also is more

promising than the bandit problem itself. On the one hand payments needs to be

pinned down for each different incentive friction in addition to the scheduling prob-

lem which might seem like a complication, under bi-directionality (and potentially

other future laws of motion) the payments being a choice allows for construction of

bandits, that might help alleviate the intractability issues by a suitable choice, while

simultaneously capturing the relevant phenomena.

5 Appendix

In most calculations, it is necessary to use a common version (see Serfozo (2009)

pp 399-400) of Wald’s identity for discounted partial sums with stopping times. For

convenience, I include the identity here as well.

Identity 1 (Wald’s Identity for Discounted Sums). Suppose that X1, X2, . . . are i.i.d.

with mean x̄. Let δ ∈ (0, 1) and τ be a stopping time for X1, X2, . . . with E(τ) < ∞
and E(δτ ) exists. Then,

E(
τ∑
t=0

δtXt) =
x̄(1− δE(δτ ))

1− δ

5.1 Proof of Lemma 1

Proof. Note that due to Assumption 4 in any principal optimal contract no agent

ever breaks off, that is dti = 1 for all t and for all i. Thus in any principal optimal

contract the continuation payoff for any agent i at any period t is given by

vti = E

[
∞∑
τ=t

δτ−tpτi

]
.

Observe that if the agent ever breaks off at period t he receives a payoff ρi(s
t
i).

Thus if E [
∑∞

τ=t δ
τ−tpτi ] ≥ ρi(s

t
i) for all t then the agent never has an incentive to
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break of from the principal. On the other hand if there exists a history hτ and a

period τ where the inequality does not hold, then in that period the agent can gain

by breaking off. Since the agent does not have any additional choices the condition

is necessary and sufficient.

5.2 Proof of Lemma 2

Recall that a strategy of the principal is a mapping σ0(ht) that maps a history to a

payment vector {pti}i∈{1,2,...,N} ∈ RN and utilization vector {I ti}i∈{0,1,2,...,N} ∈ {0, 1}N+1

with the restriction that
∑N

i=0 I
t
i = 1 and a public signal yt ∈ Y . Since the public

signal sent is payoff irrelevant, on the equilibrium path it is without loss to assume

that the principal sends yt = (pt, st) every period. I will denote a deviation at history

ht from an equilibrium strategy σ0 a deviation against i if σ0 recommends I ti and pti

after ht and the principal deviates by either offering Ĩ ti 6= I ti or p̃ti 6= pti. I will assume

that any deviation that does not involve a deviation against i for some i is ignored

both by the agents and the principal. Observe that the agent’s minmax action is

to break off from the principal. Given the bilateral nature of the relationships it

is without loss to assume that any deviation against i is punished by agent i by

immediate rejection and breaking off, that is dti = 0. Similarly all agents who are not

deviated against will accept the offer. Suppose σ is a principal optimal relational by

assumption 4, on the equilibrium path no agent ever breaks off, thus, under σ the

principal’s payoff starting from period t following a history ht is given by

vt0(σ) = E

[
∞∑
τ=t

δτ−t

(
N∑
k=1

Iτk [v − ck(sτk)]−
N∑
k=1

pτk

)]
.

Reorganizing the sums leads to:

vt0(σ) = E

[
N∑
k=1

(
∞∑
τ=t

δτ−tIτk [v − ck(sτk)]−
N∑
k=1

pτk

)]
.

Once the principal deviates against an agent i, then agent i will leave the game and

his states will transition downwards until they reach the initial state. Now consider

the following replication of i by the principal. Let τ be the period where agent i

breaks off from the principal. And let p̂τi be the payment that the principal would

have paid on path, and let ŝτi be the random variable that denotes state of agent i at
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the end of period τ on path, conditional on Iτi . At the end of period τ let sτj and pτj

respectively denote the states and payments made to agents j 6= i. Then in period

τ the principal sends yτ = (ŝτi , p̂
τ
i , {sτj}j 6=i, {pτj}j 6=i). That is the principal sends what

the public history would be (including randomization by the principal conditional on

whether agent i is employed or not) as a public signal. In period τ + 1 the principal

makes offers to all agents j 6= i as if the history hτ−1 was followed by (yτ , yτ ). In this

manner in period τ + 1 for all agents j 6= i, Iτ+1
j and pτ+1

j is the same both on path

and after a deviation against i in period τ . For now assume the agents accept these

offers. If in period τ + 1 conditional on the history (hτ−1, (yτ , yτ )), I
τ+1
i = 1 then

the principal utilizes herself Iτ+1
0 = 1 if one of the agents were to be utilized then

that agent is utilized. Again conditional on ŝτi ’s realization and Iτ+1
i , the principal

can randomize according to P a
i or P p

i respectively to generate the random variable

ŝτ+1
i . At the end of period τ + 1 then the principal would then send a signal yτ+1

where yτ = (ŝτ+1
i , pτ+1

i , {sτj + 1}j 6=i, {pτj + 1}j 6=i) Clearly for all periods τ + k for k ≥ 1

the principal can continue randomizing to replicate what the on path public history

would be as if agent i has not broken off and send it as a signal yτ+k. If the principal

uses this replication strategy then all agents j 6= i have no incentive to reject the

offers at any period τ + k since they are the same both on the equilibrium path as

well as after a deviation against i. In particular in such a strategy yt will follow

the on equilibrium path of (pt, st) for all t even after a deviation against i. Finally

since σ was principal optimal, keeping the rest of the schedule Iτ+k
j and pτ+k

j has to

be optimal. But then the after deviation optimal payoff for some t > τ denoted by

vt0(σ|dev − i) is as follows:

vt0(σ|dev − i) = E

[∑
k 6=i

(
∞∑
r=t

δr−tIτk [v − ck(srk)]−
∑
k 6=i

prk

)]

At the point of deviation, the principal also loses γi(s
τ
i ). Thus if the principal is to

not deviate against i in period τ the following must hold:

E

[
N∑
k=1

(
∞∑
r=τ

δr−τIrk [v − ck(srk)]−
N∑
k=1

prk

)]

≥ −γi(sτi ) + E

[∑
k 6=i

(
∞∑
r=τ

δr−τIrk [v − ck(srk)]−
∑
k 6=i

prk

)]
.

31



Notice that the expectation operator on both sides have the same law due to the

replication of i strategy. Simplifying the above yields:

E

[
∞∑
r=τ

δr−τIri [v − ci(sri )]− pri

]
≥ −γi(sτi ).

Observe that since
∑N

i=0 I
t
i = 1 which the principal can replicate multiple agents in a

similar fashion to above as well, just by replacing the agent that was deviated against

by her own utilization in the relevant period. Thus in order for the principal to not

deviate against any agent in any period we need ICi
0 holding. Finally observe that

the special form of the public signal is completely unnecessary as any on path history

can in principle be mapped to a public randomization device that takes values in

[0, 1], which is standard in the literature.

5.3 Proof of Proposition 2

Observation 1. Any pure Markov policy will map states into utilization decisions.

Let π be any pure Markov policy, and let Sπi denote its active set such that I ti = 1⇔
sti ∈ Sπi .

Note that the initial state is si,1, and consider any pure Markov policy π, identified

with its active set Sπi . Let si,x = max{si ∈ Si : si 6∈ Sπi }. Then, by definition under

policy π, for all t sti ∈ {si,1, . . . si,x}. Moreover, for all t, I ti = 1⇔ sti < si,x. However,

observe that due to the bidirectional law of motion, once state si,x is reached, the

agent becomes passive and hence returns to state si,x−1. By definition si,x−1 ∈ Sπi ,

the agent becomes active again and continues to alternate between the two states

from that point onward.

5.4 Proof of Proposition 3

First, observe that with any threshold policy for agent i, only the threshold level

s̄i = si,y, y ∈ Ni and the state immediately before si,y−1 are recurrent. Any other

state si,y−k for k > 1 will be transient, and any state si,y+l for l > 0 will never be

reached. Below, I first show that the incentive constraints of the agent hold with

equality in the recurrent states; then, I show that the incentive constraints also hold

with equality in the transient states. Hence, the principal leaves no slack for the

agent.
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Lemma 5. When ppi (si,k) = ρi(si,k)− δρi(si,k−1) for all k ∈ {1, 2, . . . , Ni}, the incen-

tive constraints of the agent hold with equality in the recurrent states.

Proof of Lemma 5. Let Ti(x, y, z) denote the expected discounted time agent i spends

in state si,x under the threshold policy with threshold si,y starting from initial state

si,z. Consider an arbitrary threshold k; then, the incentive conditions holding with

equality implies

pai (si,k−1)Ti(k − 1, k, k − 1) + ppi (si,k)Ti(k, k, k − 1) = ρi(si,k−1), (IC at si,k−1)

pai (si,k−1)Ti(k − 1, k, k) + ppi (si,k)Ti(k, k, k) = ρi(si,k). (IC at si,k)

Observe that the left-hand side (lhs) of first line corresponds to the expected dis-

counted value of all future payments to the agent starting from state si,k−1 under

the k threshold policy and the right-hand side (rhs) is the benefit of breaking off.

Similarly, the lhs of the second line corresponds to the expected discounted value of

all future payments to the agent starting from state si,k under the k threshold policy,

and the rhs is the benefit of breaking off. Rearranging the second equation, we obtain

pai (si,k−1)Ti(k − 1, k, k) = ρi(k)− ppi (si,k)Ti(k, k, k).

Now, by the bidirectional law of motion, observe that after spending a single period

in state k, the agent returns to k − 1 before cycling again, which implies

Ti(k − 1, k, k) = δTi(k − 1, k, k − 1).

Plugging in the equality from the second line and using the relationship Ti(k −
1, k, k) = δTi(k − 1, k, k − 1), the system reduces to:

ρi(k)− ppi (si,k)Ti(k, k, k) + δ(ppi (si,k)Ti(k, k, k − 1)) = δρi(k − 1).

with pai (·) being free. Again, since the agent returns to k − 1 after spending a single

period in state k before returning to state k − 1, we also have the following relation

Ti(k, k, k) = 1 + δTi(k, k, k − 1).

Plugging in the second relation pins down ppi (si,k) = ρi(si,k) − δρi(si,k−1) for the

incentive conditions to hold at the recurrent states, regardless of pai (si,k), for any

threshold k.

Lemma 6. When pai (si,k) = (1−δ(1−qi))ρi(si,k)−δqiρi(si,k+1) for all k ∈ {1, 2, . . . , Ni},
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the incentive constraints of the agent hold with equality at the transient states.

Proof of Lemma 6. From Lemma 5, for any threshold k, we know that at the recurrent

states, the incentive constraints hold with equality with no restrictions on the active

payments. Let τk−1 = inft≥0{t : sti = si,k−1, s
0
i = si,k−2 and Isi = 1∀s}; that is, τk−1 is

the time to reach state k− 1 starting from state k− 2 by utilizing the agent in every

period. Given the law of motion, this process is equivalent to repeated Bernoulli trials

with odds qi until the first success. By definition, we have

E(δτk−1) =
qiδ

1− δ(1− qi)
, E(δτk−1−1) =

qi
1− δ(1− qi)

.

Observe that under the threshold policy with active-passive payments, once the agent

reaches state k−1, the expected discounted payment from the first time state k−1 is

reached is equal to ρi(si,k−1). Then, the expected discounted payment starting from

state k − 2 under the threshold k can be written as

E

[
τk−1−1∑
t=0

δtpai (si,k−2) + δτk−1ρi(si,k−1)

]
.

Now, using identity 1 and the identity above, we can calculate the expectation in

closed form and equate it to the incentive constraint at state k − 2 to obtain

pai (si,k−2)

1− δ(1− qi)
+

qiδρi(si,k−1)

1− δ(1− qi)
= ρi(si,k−2).

After minor algebra and shifting of the indices, we can pin down the active payment

as pai (si,k) = (1 − δ(1 − qi))ρi(si,k) − δqiρi(si,k+1), which ensures that the incentive

conditions hold at all states in which the agent is active, both in the transient and

recurrent states. Notice the payments are only tied to the subsequent state that can

be reached after utilization, conditional on staying on the current state. Therefore for

i.i.d. randomization at the initial state is particularly useful as the set of reachable

states remain the same even by repeated randomization. In particular, letting ri

denote the rate of randomization, the probability of going up is now qiri, whereas

the probability of staying in the initial state is 1 − qiri. Therefore if randomization

at the initial state is used, the expected discounted time to go up, denoted by δτ1(ri)

can be calculated in an identical manner as qiriδ
1−δ(1−qiri) . Using identical calculations

we reach that if randomization is used in the initial state the active payment in the
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initial state with i.i.d. randomization rate ri, is equal to

pai (si,1) = 1− δ(1− qiri)ρi(si,2)− qiriδρi(si,k−1).

Notice allowing for initial randomization only changes the active payment in the initial

state and has no impact on other payments.

5.5 Proof of Theorem 1

Using lemma 3, the principal’s problem is equal to:

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )])

]
(SPi)

subject to E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )])

]
≥ ρi(s

t
i)− γi(sti). (DEi)

Furthermore, according to proposition 1, there is a Markovian solution to SPi. Due to

proposition 2, any Markov policy is equivalent to a threshold policy, and proposition

3 for active-passive payments guarantee that the incentive condition of the agent is

satisfied exactly at every reachable history with any threshold policy, regardless of the

threshold. Hence, assuming active-passive payments and a threshold policy without

loss, the principal’s problem reduces to:

[Principal′s Single Restless Bandit Problem]

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi )Rp

i (si,k))

]
subject to her own incentive constraint.

5.5.1 Indexability and the Index

The optimality of the index policy and the index presented in the main text fol-

lows analogously to Glazebrook, Hodge, and Kirkbride (2013), theorem 2. Since

Glazebrook, Hodge, and Kirkbride (2013) is for a setting without discounting, I will

replicate some of their arguments translated to the current setting for completeness.

As noted in Whittle (1988), indexability of a restless bandit is tied to a hypothetical

subsidy problem. In particular, consider the hypothetical restless bandit, where in
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addition to passive rewards, a subsidy of λ ≥ 0 is received whenever the passive ac-

tion is taken. Whittle (1988) shows that the restless bandit is indexable if the set of

states where it is activation is optimal is weakly shrinking as the subsidy increases.

Ignoring the principal’s IC, the single restless bandit problem with subsidy is:

[Principal′s Single Restless Bandit with Subsidy Problem]

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi )(Rp

i (si,k) + λ))

]
In light of proposition 2 this is equivalent to choosing a threshold state s̄i = si,k ∈ Si,
k ∈ Ni. Thus, using the work and reward measures we can equivalently state the

subsidy problem as follows:

[Principal′s Single Restless Bandit with Subsidy Problem II]

max
{k∈Ni}

E
[
f 1
i (k) + (1− λ)g1

i (k)
]

Now let ki(λ) = arg max{k∈Ni} E [f 1
i (k) + (1− λ)g1

i (k)]. The maximization inside is

clearly increasing, continuous, piecewise linear and weakly concave in λ (notice λ is

only received at the threshold state with a threshold policy), with the right gradient

equal to g1
i (k). Furthermore the weak concavity implies as λ increases g1

i (ki(λ)) must

be decreasing, which implies ki(λ) is weakly decreasing in λ establishing indexability.

Finally for the identity of the index, due to the piecewise linearity a given threshold

is optimal for a range of λ. Following Glazebrook, Hodge, and Kirkbride (2013) again

I pick the largest such λ which makes a state k an optimal threshold as the index.

The largest such λ is also the smallest λ that makes the state k + 1 optimal due

to the continuity of the objective in the subsidy problem. Therefore letting λi(si,k)

denote the largest λ that makes the threshold k optimal, the indifference condition is

as follows:

f 1
i (k) + (1− λi(si,k))g1

i (k) = f 1
i (k + 1) + (1− λi(si,k))g1

i (k + 1).

Finally noticing that the transient parts have the same returns and take the same

amount work (even if randomization is used in the initial state), we can cancel them

out in both sides to reach:

fki (k) + (1− λi(si,k))gki (k) = fki (k + 1) + (1− λi(si,k))gki (k + 1).
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Reorganizing this leads to the index identified. To see that initial randomization has

no impact, observe that f 1
i (1) and g1

i (1) is equal to 0. A randomization at the initial

state is equivalent to changing the speed at the initial state only, which affects g1
i (2).

But the way the active payment with randomization is adjusted exactly equal to the

how much g1
i (2) is changing compared to a pure threshold, therefore the index can

without loss be considered if there is no randomization. Furthermore we have the

following observation:

Observation 2. λi(si,k) is weakly decreasing in k.

The observation follows since ki(λ) = arg max{k∈Ni} E [f 1
i (k) + (1− λ)g1

i (k)] is

weakly decreasing in λ.

5.6 Proof of Proposition 4

Proof. Let Vλ,i(s̃i) denote the optimal value of the SPi − λ problem, conditional on

the starting state being s̃i, formally: and let Di(s̃i) denote the set of controls that

satisfy the dynamic enforcement when the current state of agent i is s̃i ∈ Si. So we

can write the optimal value succinctly as:

Vλ,i(s̃i) = max
{Iτi }∞τ=0∈Di(s̃i)

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )] + (1− Iτi )λ) |s0
i = s̃i

]

Let sti(Îi|s̃i) denote the realized state at the beginning of period t (before the period

t actions are taken) under the control {Îτi }∞τ=0 starting from the initial state s̃i ∈ Si.
With a slight abuse I will refer to the set {si ∈ Si|P(sti(Îi|s̃i) = si) > 0} as “si

reachable at time t”.7 For an arbitrary control {Îτi }∞τ=0 and ŝi reachable at time t, let

J(Îi, ŝi, t) be defined as:

J(Îi, ŝi, t) = E

[
∞∑
τ=t

δτ−t
(
Îτi [v − ci(sτi )] + (1− Iτi )λ

)
|sti(Îi|s̃i) = ŝi

]
,

Similarly let JD(Îi, ŝi, t)

JD(Îi, ŝi, t) = E

[
∞∑
τ=t

δτ−t
(
Îτi [v − ci(sτi )]

)
|sti(Îi|s̃i) = ŝi

]
,

7Notice that the state reached under a given policy at period t is a random variable, to ease
notational burden the definitions will be given in terms of the realizations of this random variable
since dynamic enforcement has to hold for all possible realizations.
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Clearly, Îi ∈ Di(s̃i) if and only if JD(Îi, ŝi, t) ≥ ρ(ŝi)− γ(ŝi) for all t and all reachable

ŝi at t. A dynamically enforceable control Îi ∈ Di(s̃i) is called optimal if J(Îi, s̃i, 0) =

Vλ,i(s̃i). Observe that by definition J(Îi, ŝi, t) ≥ JD(Îi, ŝi, t) for all t and all ŝi since

λ ≥ 0.

Lemma 7. If Îi ∈ Di(s̃i) is optimal then JD(Îi, ŝi, t) ≥ 0 for all t and all reachable

ŝi.

Proof. Suppose not, Îi ∈ Di(s̃i) is optimal but there exists some t and ŝi reachable

at t such that JD(Îi, ŝi, t) < 0. Then the continuation payoff from that state and

time onwards is J(Îi, ŝi, t) = JD(Îi, ŝi, t) +λ
(

1
1−δ − E

[∑∞
τ=t δ

τ−tÎτi |sti(Îi|s̃i) = ŝi

])
<

λ
1−δ . But then consider the strategy Ĩi that is identical to Î except setting Ĩτi = 0

for all τ ≥ t in the histories where ŝi is reached at time t. Clearly J(Îi, ŝi, t) <

J(Ĩi, ŝi, t) then by the law of iterated expectations we have J(Îi, s̃i, 0) < J(Ĩi, s̃i, 0).

Furthermore JD(Îi, ŝi, t) < JD(Ĩi, ŝi, t) = 0, but Î was dynamically enforceable at t,

thus Ĩ is dynamically enforceable at t. And again by law of iterated expectations,

JD(Îi, ŝi, τ) < JD(Ĩi, ŝi, τ) for all τ ≤ t thus Ĩ is dynamically enforceable at all periods

leading up to t. And finally JD(Ĩi, ŝi, τ) = 0 ≥ ρ(ŝi) − γ(ŝi) for all τ > t and all ŝi

by assumption 4, which means Ĩ ∈ Di(s̃i). But then Ĩ ∈ Di(s̃i) and leads to a higher

payoff which contradicts the optimality of Î.

As noted earlier J(Îi, ŝi, t) ≥ JD(Îi, ŝi, t) for all t, therefore we can add the con-

straint J(Îi, ŝi, t) ≥ 0, without imposing further restrictions. Thus using Lemma 7

we have:

Vλ,i(s̃i) = max
{Iτi }∞τ=0

E

[
∞∑
τ=0

δτ (Iτi [v − ci(sτi )] + (1− Iτi )λ) |s0
i = s̃i

]

subject to E

[
∞∑
τ=t

δτ−t (Iτi [v − ci(sτi )]) |s0
i = s̃i

]
≥ 0 for all t,

E

[
∞∑
τ=t

δτ−t (Iτi [v − ci(sτi )] + (1− Iτi )λ) |s0
i = s̃i

]
≥ 0 for all t.

Finally, letting h1(Ii, si) = (Ii [v − ci(si)] + (1− Ii)λ) and h2(Ii, si) = Ii [v − ci(si)].
We can represent the problem in the notation of Marcet and Marimon (2019) as
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follows:

Vλ,i(s̃i) = max
{Iτi }

E

[
2∑
j=1

∞∑
τ=0

δτµjhj(Iτi , s
τ
i )|s0

i = s̃i

]

subject to E

[
∞∑
τ=t

δτ−thi(Iτi , s
τ
i )|s0

i = s̃i

]
≥ 0 for all t, and all i ∈ {1, 2},

µ1 = 1, µ2 = 0.

Lemma 8. Vλ,i(s̃i) satisfies the following saddle point equation, with µ1 = 1, µ2 = 0.

W (s, µ1, µ2) = inf
ξ1≥0,ξ2≥0

sup
I∈[0,1]

{µ1h1(Ii, si) + µ2h2(Ii, si) + ξ1h1(Ii, si) + ξ2h2(Ii, si)

+ δW (s′, (µ1)′, (µ2)′)}

subject to s′ = I(si,n + (si,n+1 − si,n)X) + (1− I)si,n−1 for s = si,n

((µ1)′, (µ2)′) = (µ1 + ξ1, µ2 + ξ2).

And X is an exogenous sequence of binary random variables with P (X = 1) = qi.

With the convention that si,0−1 = si,0 and si,N+1 = si,N .

Proof. Observe that Assumptions A1, A2, A3, A4, A5, A7 of Marcet and Marimon

(2019) are satisfied. Thus both theorems 1 and 2 are applicable, therefore any solu-

tion to the saddle point equation is a solution to SPi−λ problem and any solution to

SPi− λ problem is a solution to the saddle point equation. The conditions for A1 to

A4 are trivially satisfied due to the finite state and action space and bounded per pe-

riod payoffs. A5 is satisfied since the law of motion for s′ is linear in X for any given

I ∈ [0, 1](thus including randomizations) or s, A7 is satisfied since the strategy of

Iτi = 0 for all τ yields a payoff of λ/(1− δ) ≥ 0 and satisfies the dynamic enforcement

constraint. µ1 = 1, µ2 = 0 is just the initialization as presented in SPi − λ.

Lemma 9. The saddle point equation for any µ1 ≥ 0, µ2 ≥ 0 is equivalent to the

following dynamic programming problem:

W (s, µ1, µ2) = sup
I∈[0,1]

{µ1h1(Ii, si) + µ2h2(Ii, si) + δW (s′, µ1, µ2)}

subject to s′ = I(si,n + (si,n+1 − si,n)x) + (1− I)si,n−1 for s = si,n,

h2(Ii, si) ≥ 0.

Proof. Observe that by definition h1(Ii, si) ≥ h2(Ii, si) for all I ∈ [0, 1] and si ∈ Si.
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Now observe that if h2(1, si) ≥ 0, then the infimum at the outside is achieved with

ξ1 = ξ2 = 0. On the other hand if h2(1, si) < 0, and I = 1 the infimum would

require ξ2 = ξ1 = −∞ which is not possible. Therefore it must be the case that

when h2(1, si) < 0, I has to be equal to 0. But when I = 0, we have h2(0, si) = 0,

so ξ2 = 0 is a solution. On the other hand when I = 0 we have h1(0, si) = λ ≥ 0,

so we must have ξ1 = 0. But then we can replace the law of motion for the co-state

variables capturing the forward constraint and replace it with just the constraint

h2(1, si) ≥ 0.

By Lemma 9, the saddle point equation for any µ1 ≥ 0, µ2 ≥ 0 is equivalent to a

dynamic programming problem with only local constraints, therefore has a Markovian

solution. In particular the SPi−λ, which is the solution to the saddle point equation

with µ1 = 1, µ2 = 0 also has a Markovian solution.

5.7 Proof of Theorem 2

Let PP denote the solution to the principal’s problem. The principal’s relaxed prob-

lem was introduced by relaxing the utilization constraint Let PPR denote the solution

to the relaxed problem. By definition, we know that PPR ≥ PP .

Observe that the relaxed problem can be decoupled by introducing a Lagrange

multiplier to the utilization constraint, which leads to the problems PPi − λ.

max
{Iτi },{pτi }

E

[
∞∑
τ=0

δτIτi [(v − ci(sτi )) + λ(1− Iτi )− pτi ]

]
(PPi − λ)

subject to E

[
∞∑
τ=t

δτIτi [v − ci(sτi )]− pτi

]
≥ −γi(sti) for all t,

E

[
∞∑
τ=t

δτ−tpτi

]
≥ ρi(s

t
i) for all t.

Due to lemma 4, PPi−λ problems are equivalent to λ-surplus maximization problems,

subject to the surplus satisfying the dynamic enforcement constraints DEi. Now,

observe that due to Proposition 4, each λ-surplus maximization subject to DEi is

solved by a Markov policy, and due to proposition 5, each Markov policy is a threshold

policy. Therefore, when solving PPi − λ, we can restrict our attention to threshold

policies. However, due to proposition 6, we know that the principal cannot do any

better than active-passive payments for any threshold. Plugging in the closed forms
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of the active-passive payments to obtain the returns from activity-passivity reduces

the PPi − λ problem to the restless bandit problem with λ subsidy, subject to the

principal’s incentive constraint.

max
{Iti }

E

[
∞∑
τ=0

δτ (Iτi R
a
i (s

τ
i ) + (1− Iτi ) [Rp

i (si,k) + λ])

]

subject to E

[
∞∑
τ=t

δτIτi R
a
i (s

τ
i ) + (1− Iτi )Rp

i (si,k)

]
≥ −γi(sti) for all t.

Now, ignoring the constraint, the objective in this problem is a one-armed, bidirec-

tional, skip-free bandit, similar to the single agent one. Thus an identical argument

establishes that it is indexable, and the optimal policy is the Whittle index policy that

sets I ti = 1 whenever λi(s
t
i) > λ, I ti = 0 whenever λi(s

t
i) < λ and I ti ∈ [0, 1] whenever

λi(s
t
i) = λ, with λi(s

t
i) defined as in Definition 6. Moreover, whenever the indices

are positive, the payoff from that state onward under the index policy is positive and

hence greater than −γi(·).
Recombining all the individual problems yields

[Principal′s Relaxed Problem]

max
{Iti }

E

[
∞∑
τ=0

δτ

(
N∑
k=1

[Iτk [v − ck(sτk)− pak(sτk)] + (1− Iτk )ppk(s
τ
k) + λ]

)]
− λN − 1

1− δ

subject to ICi
0 for all i.

where the optimum has the value PPR.

Now, consider each of the individual single-arm problems and the collection of

all indices {{λi(si,k)}{si,k∈Si}}i∈{1,2,...,N}. Let ī be the agent with the maximum initial

index across all agents that are positive; that is, ī is the agent i ∈ {1, 2, . . . , N} such

that λi(si,1) ≥ λj(sj,1) for j 6= i and λi(si,1) ≥ 0. If no such agent exists, the solution

to all individual problems is to produce in-house all the time. Similarly, let i be the

agent who has the maximum initial index across agents other than ī; that is, i is the

agent i ∈ {1, 2, . . . , N} \ {̄i} such that λi(si,1) ≥ λj(sj,1) for j ∈ {1, 2, . . . , N} \ {̄i}.
Now, consider the principal’s relaxed problem with active-passive payments.

Setting λ = max{λi(si,1), 0} results in only agent ī or i ever being active. Due to

observation 2 for any agent i we know the indices are weakly decreasing in k ∈ Ni.

Therefore if ī’s index falls below another agent, immediately after resting ī again will
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have the highest index. Thus, there are only three possible cases:

Case 1 If λi(si,1) < 0, then only agent ī is ever utilized whenever the index of

the state of ī is positive, which achieves optimality in the relaxed problem and is

also feasible in the restricted problem since the utilization constraint is not binding,

resulting in PPR = PP with the index policy.

Case 2 If λi(si,1) < minsī,k∈Sī λī(sī,k), then again only agent ī is ever utilized

whenever the index of the state of ī is positive, which achieves optimality in the

relaxed problem and is also feasible in the restricted problem since the utilization

constraint is not binding, resulting in PPR = PP with the index policy.

Case 3 If λi(si,1) > 0 and λi(si,1) > minsī,k∈Sī λī(sī,k), then with the chosen

λ, the principal is indifferent between utilizing agent i at every period and not. A

particular way of breaking this indifference is utilizing agent ī whenever the index of

the state of ī is greater than λi(si,1). Notice, this is equivalent to using qī as an i.i.d.

initial randomization rate for agent i after a random time is reached. This policy is

an optimal policy in the relaxed problem and is feasible in the restricted problem,

resulting in PPR = PP .
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